Uniform Air Quality Training Program

Electrostatic Precipitators Course #281

Presented by Joe Yager

California Environmental Protection Agency AIR RESOURCES BOARD Compliance Division

Course Overview

Background/Applications **Theory of Operation** ► Major Types of ESPs **Design Considerations ESP Components** Performance Monitoring Inspecting ESPs

Ē

U.S. Mortality Figures

- 64,000 = Deaths from particulate air pollution (1996 report)
- 40,676 = Traffic accident fatalities (1994)
- 32,179 = AIDS deaths (1995)
- 32,436 = Handgun fatalities (1997)

430,700 = Deaths from smoking (

Particulate Air Pollution-Related Deaths

 \equiv

Based On 1996 Report

Premature Deaths Per Year

PM₁₀ Emissions by Source Category (1995)

Source: EPA Trends Reports, Oct 1996

PM-2.5 Nonattainment Areas (1997 Standard)

a nonattainment area boundary.

3/2012

Exhibit 2-16. PM₁₀ emissions in the U.S. by source category, 1990, 1996-2002, and 2005

^aData are presented for 1990, 1996-2002, and 2005, as datasets from these inventory years are all fully up-to-date. Data are

B. Relative amounts of PM₁₀ emissions from anthropogenic and other sources, 2005^b

Miscellaneous

Single-Stage: 1913 Cottrell (US); Lodge (UK)

Two-Stage: 1933 Penney

Disadvantages

Two-Stage

Charging

Single -Stage

Charging & Collection

Figure 301.2

Single-Stage Industrial ESP

Ð

Figure 303.4

Ţ

Tubular Condensing Wet ESP

Courtesy Croll-Reynolds

Hitachi Tubular Wet ESP

Two-Stage Module

Wires

Ionization Section

Charging
 Collection
 Removal

Electric Field Generation

Collection Electrode

Non-Uniform Electrical Field

Discharge Electrode

Collection Electrode

Corona (voltage negative)

Figure 301.3

Charging and Collectionso far

- 1. "Corona" generated at discharge electrode = high-velocity electrons
- 2. Flue gas molecules ionized by high-velocity electrons = positive gas ions + free electrons
- 3. Free electrons migrate towards positive collection electrode
- 4. Free electrons captured by gas molecules = negative gas ions
- 5. Negative gas ions attach to particles which migrate to collection electrode

Figure 301.3

Diffusion Charging

Air Flow

Negative Electrode

Positive Electrode

Particle Size & Collection Efficiency

Figure 305.5

Conduction Mechanisms

Surface

Two-stage precipitator

Positively charged particles

lonize

Uncharged particles

Figure 303.1

Design Considerations (garbage in/cleaner air out)

Dust Properties
Gas Flow Rate
Gas Temperature
Migration Velocity

- Characteristic of type and size of particles
- Experimentally determined or calculated
- Used with collection area and gas flow rate to calculate efficiency

Resistivity

- Tendency of a particles to retain a charge after collection
- Resistance of collected dust layer to flow of electrical current
- ► Affected By:
 - Chemical make-up of dust
 - Temperature
 - Moisture
 - Sulfur content of flue gas

Page 300-25

Resistivity of Dusts at Various Temperatures

Figure 305.4

Ē

Effect of Temperature & Moisture on Resistivity of Cement Dust

Fly Ash Resistivity Versus Coal Sulfur Content

Generalized **Effect of Temperature** on Resistivity of Fly Ash

Problem Resistivity Conditions

High
Slower migration rate
Excessive rapping forces
"Back Corona"

Low • Reentrainment

Where should ESP be put it?

Flue Gas Conditioning System

AspectEffective LengthRatioEffective Height

For efficiencies of 99% or higher, should be at least 1.0 to 1.5

Collection Plate Spacing

Critical Performance Factor
 Important Maintenance Point
 Single-Stage Spacing: 9 - 20 inches
 Wider Spacing = Higher Voltages

Sectionalization

Fields and Yields

Power Requirements/ Sparking

Section 306

Inlet Duct

Gas Flow Distribution

Not So Good

Better

Figure 306.9

Discharge Electrodes

Rapper shaft

View into Penthouse

Discharge Electrode Insulator

Frame-Type Discharge Electrodes

Collection Plate

Collection Plate Designs

View into side port

Discharge Electrode

Collection Electrode

Particulate Removal

▶ Pneumatic ▶ Magnetic-Impulse, **Gravity-Impact (MIGI)** Hammer and Anvil Vibratory

Section 306.5

Pneumatic Rappers

(DANGER)

GH TACE

1

Magnetic Impulse Rappers

199
Magnetic-Impulse Gravity-Impact (MIGI) Rapper

Penthouse Vent Blower

Hammer-Anvil Rappers

 \equiv

SOMERVILLE, NEW JERSEY

MICROPROCESSOR RAPPER CONTROL

Rapper Control Panel

Collection Hopper

Hopper with Strike Plate

Hopper Level Indicator System

Hopper Vibrator

Hopper Heater Control

and the second se

Airlock & Bin Screw

Rotary Airlock Valve

Pneumatic Dust Collection System

Dust Discharge Problems

▶ Inleakage **Corrosion** Dust Buildup Fugitive Emissions

Transformer
Rectifier
Sensors
Control System

VOLTAGE

Transformer-Rectifier (T-R Set)

Transformer - Increases voltage at discharge electrodes

Rectifier - Converts alternating current (AC) to direct current (DC)

Bus

Transformer-Rectifier Set

Sensors/Gauges

Control System

Power Control Circuits
Voltage-Limit Control
Current-Limit Control
Spark Control

T-R Set Spec. Plate

Analog Gauges

Digital Readouts

Performance Monitoring

Air Load Testing Gas Load Testing ▷ Opacity **Corona Power Spark Rate**

Voltage-Current (V-I) Curve

 \equiv

Corona Power versus Collection Efficiency for Coal-Fired Utility Boiler

Baseline Conditions

High Resistivity Shifts from Baseline

Common Problems

- Resistivity
- Hopper Pluggage or Overflow
- Misalignment or Warpage
- ► Insulator Failure
- **Discharge Electrode Failure**
- ► Air Inleakage
- **Corrosion**
- Rapping System Problems
- Control System Failures
- **Particle Size and Concentration**

Enhancing ESP Efficiency

Wide plate spacing Pulse energization Automatic voltage controls Improved flow conditions Optimal rapper timing Flue gas conditioning **COHPAC**

INSPECTING ESPs

Typical Permit Conditions

- Opacity limits
- **Grain loading limits**
- Ranges of ESP inlet & outlet temperatures
- Minimum total corona power
- ► Maximum process rate
- Recordkeeping requirements
- **CEM requirements**
- Maximum allowable pressure drops
- Limit on the number of fields offline

- **System Entrance/Exit**
- ▶ Transport
- ▶ Air Mover
- Control Device
- Instrumentation
- Subsystem
- ▶ Records

Observe Stack Effluent

Bouguer's Law

Perform External Inspection

▶ T-R Sets Rappers & Vibrators ▶ Insulators ▶ Shell **Access Doors Ductwork**

Note Exposed Insulation

MARGER DE ANDRE DE ANDRE

Evaluate Ash Handling Procedures

Evacuation rate
Level alarms operating
Hopper temperature
Ash buildup

<section-header>

Instrumentation

Power Input: 1º/2º Voltage; 1º/2º Current; Spark Rate **Gas Flow & Temperature** Rapper Frequency/Intensity Hopper Dust Level Indicator/Alarm Opacity Monitor Oxygen Monitor

Check High Voltage System Operation

Observe control panels
Check log for drift in electrical data
Note inoperative meters
Note T-R sets on "manual" and "auto"

Analog Gauges

■

CEM System Readouts Controls

Review Recordkeeping

Design Specifications
Operating Data & Records
Inspection & Maintenance Records
Component Failure Records

Safety

