
OZONE Formation



PLASTIC RESINS AND FIBERGLASS OPERATIONS

NACT Course 261

Course Overview

- Plastic resin uses
- Plastic resin theory / operation
- Air pollution control devices
- Implementing regulations
- Typical permit conditions
- Inspection procedures
- Federal regulations

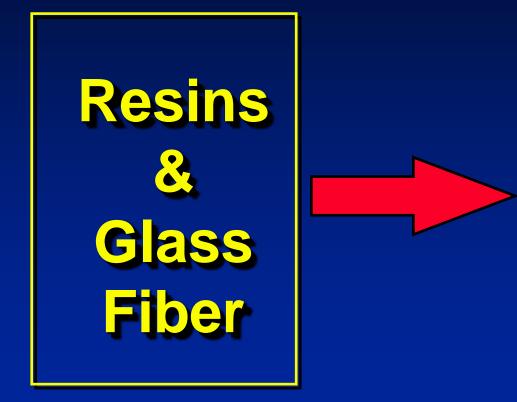
Uses of Polyester Resins

- Aircraft / Aerospace / Automotive
- Marine / Railroad applications
- Electrical / Electronic components
- Construction / Building materials
- Packaging materials
- Consumer / Institutional products
- Corrosion resistant products
- Business equipment
- Furniture / Furnishings

Composite Decking

Advantages

- Structural strength & rigidity
- Heat resistance
- Corrosion resistance
- Dielectric strength
- Design flexibility
- Low finish cost
- Moisture resistance
- Reuse & recycle
- Light weight
- Durable



Disadvantages

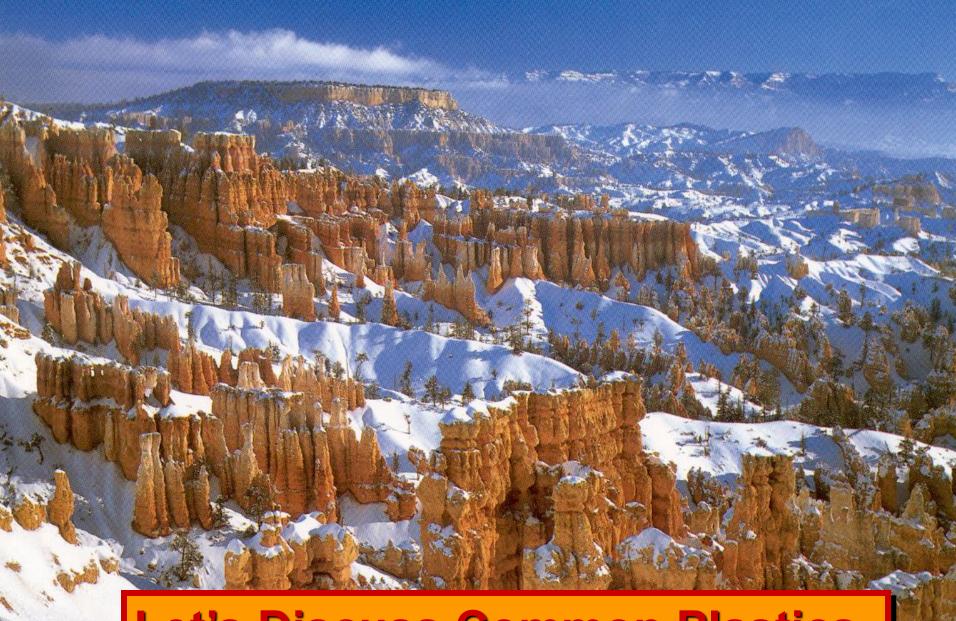
- VOC emissions
- Toxicity issues
- Flammability
- Storage
- Disposal

Emissions From Polyester Resins

- Ethylene
- Styrene / MMA
- Ethylene Glycol
- Pentane
- Acetone / MEK
- MEKP
- **Dibasic Ester**

Coming to Terms

- Plastic
 - Organic compounds that can be molded
- Polymer
 - Two or more like molecules joined to form a more complex, physically different molecule
- Resin
 - Carbon compound polymers used in reinforced products to surround and hold fibers


How are Plastics made?

Consist of building blocks : HC

 derived from petroleum or NG
 Monomers (mono=one, mer =unit)
 bonded into chains → Polymers

Reaction known as Polymerization

 Ethylene → Polyethylene
 Propylene → Polypropylene

Let's Discuss Common Plastics

Common Plastic Materials

- Polycarbonate
- Polyethylene
- Polystyrene
- Polypropylene

Polyesters

- Polyurethane

Polyvinyl Chloride

Polycarbonates

- Created to compete with die-cast metals
- Strong, tough & rigid
- Excellent electrical insulators

Mostly electrical uses

Polyethylene : PET

- Clear, very tough polymer
- Excellent barrier against O₂ and CO₂
- Good chemical resistance

- Soft drink bottles
- Fiber (the polyester 70s!!!)
- Magnetic tape (audio & video)

ke Norton

Fleece Made From Recycled "PET"

-orales

High Density Polyethylene

- High density version of PE
- Excellent protective barrier properties & Strong

- Milk, juice & H₂O container
- Household chemicals
- Detergents

High Density Polyethylene

Low Density Polyethylene

- Low density version of PE
- Offers clarity & flexibility
- Provides ductility

- Grocery & garbage bags
- Shrink & stretch films

Composite Decking

Polypropylene

- "Workhorse" of plastics
- High tensile strength
- High melting point
- Good chemical resistance

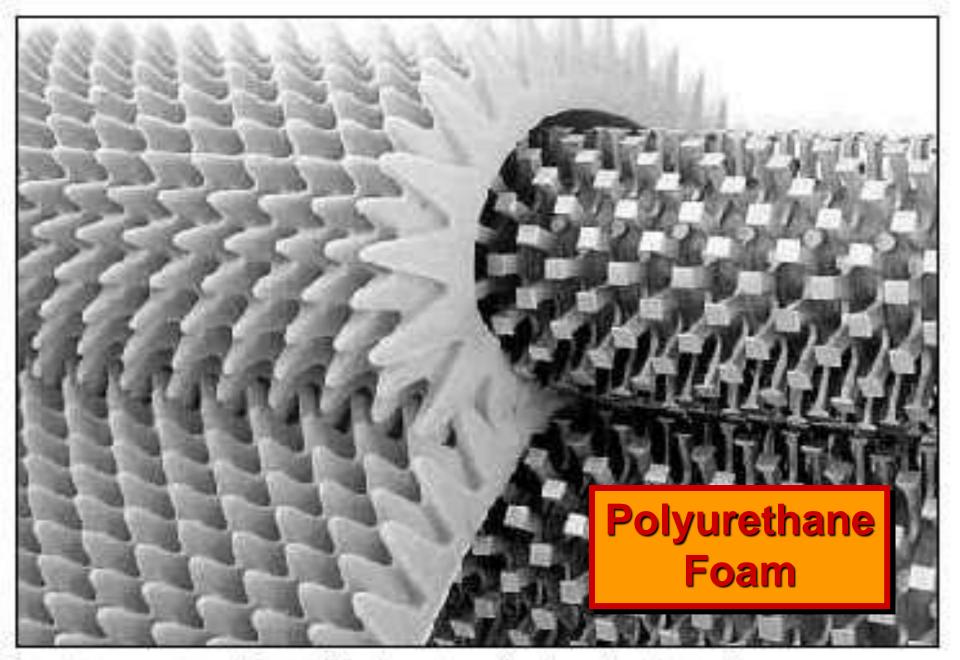
- Packaging & carpeting
- Automotive & appliances

Polystyrene

- Foamed or Expanded Polystyrene : EPS
- Exceptional insulation properties

- Foam cups & containers
- Foodservice products
- Packaging & protecting

Expanded Polystyrene Foam



Recycled Polystyrene Baseboard Molding

Polyurethanes

• Foam : bedding, auto seats, cushioning, carpet underlay

- Insulation & flotation
- Polyurethane coatings
- Abrasion resistant : printing rolls, conveyor belts, gaskets & seals

Convoluters use patterned dies to efficiently produce profile shapes from sheets of foam.

Polyvinyl Chloride (PVC)

Chemical, abrasion & weather resistance

- Pipes & sidings
- Leather-like upholstery
- Gloves, boots & apparel

Introduction to Composites

- Made up of 2 or more components

 Fibrous reinforcing network embedded
 in the cured resin matrix
 - Types of reinforcements →
 Fiberglass, Carbon fiber & Kevlar®
 - Thermosetting type resin is a plastic that cures from a liquid to a solid state
 → Polyester, Vinyl, Epoxy & Urethane

Types of Reinforcements

- Fiberglass
- Carbon FiberKevlar

Carbon Fiber

- Stiffest & strongest reinforcing fibers for polymer composites
- Used together with epoxy

- Race cars
- Space applications
- Sporting equipment

Fiberglass

- Made of silicon oxide
- Produced by a spinning process
- Pulled through a nozzle from molten glass

- Reinforcing materials
- Automotive and naval industries, sporting equipment

Fiberglass Forms

Fiberglass Forms

- Surfacing Mat (Veil)
- Chopped Strand Mat
- Roving (Spool)
- Woven Roving
- Cloth (Hand Lay-up)

Fiberglass Advantages

- High strength
- Low price
- Dimensional stability
- Temperature resistance
- Corrosion resistance
- Low weight
- Excellent dielectric properties

Fiberglass Spa

~

00

6

Ø

(P

(1)

0

Ó

0

Types of Fiberglass

E-glass and S-glass

 E-glass → Good electrical properties

 S-glass → Very strong, stiff, and temperature resistant

Glass Fiber Reinforced Resin

- Most used composites
- Temp resistance & strength
- Impregnating fibers with liquid epoxy resins

Aircraft components
Casings for missiles, pipes, tanks, pressure vessels

- Lightweight Flexible
 Comfortable
- High Tensile Strength
- Excellent Dimensional Stability
- High Flame Resistant
- High Chemical Resistant
- Used with epoxy or vinyl resin

A REAL OF THE REAL PROPERTY.

of American State and the American

- Protective & Performance Apparel
- Composites : aircraft parts/boats
- Fiber-Optic Cables
- Tires
- Ropes & Cables
- Brake Pads & Clutch Linings
- Power Transmission Belts / Hoses

Let's Discuss Types of Plastic Materials

TATING THE WATER

Types of Plastic Materials

 Thermoplastic Resins become fluid upon heating - repeatable & reversible process - no chemical change - no permanent change in physical prop. - readily extruded or molded e.g.. film, fibers, bottles etc.

Polyethylene, Polystyrene & Polypropylene

Types of Plastic Materials

Thermosetting Resins

 irreversibly polymerizes and solidifies
 chemical structure permanently altered
 cannot be resoftened
 process called curing or hardening
 e.g.. Molding, casting, powder coating

Polyurethanes, Polyester & Epoxy resins

Thermoplastic vs. Thermosetting

Thermoplastic

Thermosetting

Faster molding Lower emissions Lower costs Easy recycling Low labor intensity Design constraints Limited unit production Performance requirements Market demands

Raw Materials

Resins Fiber substrate

Fiberglass Catalysis

Additives Initiators

SLOW EPOXY RESIN HARDENER

SAG Show Handware is perf 2 of a two component. You income yeard framework UAS Show income the so-sone, formation (USAS Show income the so-sone), and the society of the society of the society of the society and the income of the society of the society of the company of the income of the society of the society of the company of the income of the society of the so

52.55.Gat 54.55.(1.5.1) @ HER.HZ.R. #30.435

Nº ~

FREETING, LAMINATING AND GLUNO.

Miss PLAG result in part 1 of a two part component being timening sport waters. Miss PLAG Result for him formulated prior waters. Miss PLAG Result for him formulated prior with Miss PLAG Result for the optimized prior with the PLAG Result have the optimized for our water of while of this afternat and another prior water water with a difference and a non-stronging space for basing and the mar-

FAST EPOXY RESIN HARDENER

MASS Fast Hardsmar spray rasis Randomer is part 3 of MAS 5 wait fractions: nevery reaso functional of per 1 we a new composition of decompt papers proteins. MAS 9 well interactions: in a rapped cost memory main includer for law rapped and the second second second second second propriori and second second second second second second back are provided for composition and syron model immung evolutions of costs and second second immung evolutions (and second second.

172 US Gal Marce (1.81.7 #10.575

Low VISCOSITY EPOXY RESIN MASS WITE result to part 1 of a long part MASS WITE result to part 1 of a long part to structure, recovery system: MASS WITE that been been to structure, exceedance that resultance. Biooding structure, the second structure that the second system of the system terms of the second system of the second system of the second the second system of the second system of the second the second system of the second system of the second the second system of the second system of the second the second system of the second system of the second the second system of the second system of the second the second system of the second s 1 136 (Sel 128 (S.R.L)

#20.002

Typical Raw Materials

What is a Resin?

Thermoset Resins

- Two Common Types
 - → Epoxy & Polyester
 - → Molding, Laminating, Casting

– Ероху

- → Higher Performance & Higher Price
- → High Strength, Weight Critical
- → Dimensionally Accurate Applications

Polyester Resins

- Building Blocks for Polyester Resins
 - → Acids & Glycols Cooked Together
 - → Dissolved in Styrene Monomer
 - → Inhibitors Added to Delay Reaction
- Product Added to a Peroxide Catalyst

 Unsaturated Portions of Monomer and Polyester React Together
 - → Hard Solid Mass

Fabrication With Polyesters

- → Reinforcements such as a Glass Fiber in a Mold
- → Saturated with Polyester Resin
- → Resin Mixed with Catalyst Causing Crosslinking Reaction
- → This Causes Resin to Harden from Liquid to Solid

 \rightarrow Polyester Resin in Fiberglass Boat Mfg.

Fabrication With FRP

→ Fabricating with Metals : Structure is Produced & External Paint is Applied

- → Fabrication with FRP : Reverse
- → Start with Mold
- → Pigmented Polyester Coating (Gel Coat) is Applied to the Mold
- → Structural Reinforcement is Built Using Fiber Glass & Polymer Resin
- Finished Part is Removed from Mold

First Step : Mold

1.0

Second Step: Wax **Application**

Requiars

Maximum Mold Release

CARNALIBA

CONTAINS

Serving Professionals Since Pic

Chopped Fiberglass Application

and the

Chopper Gun

CTD

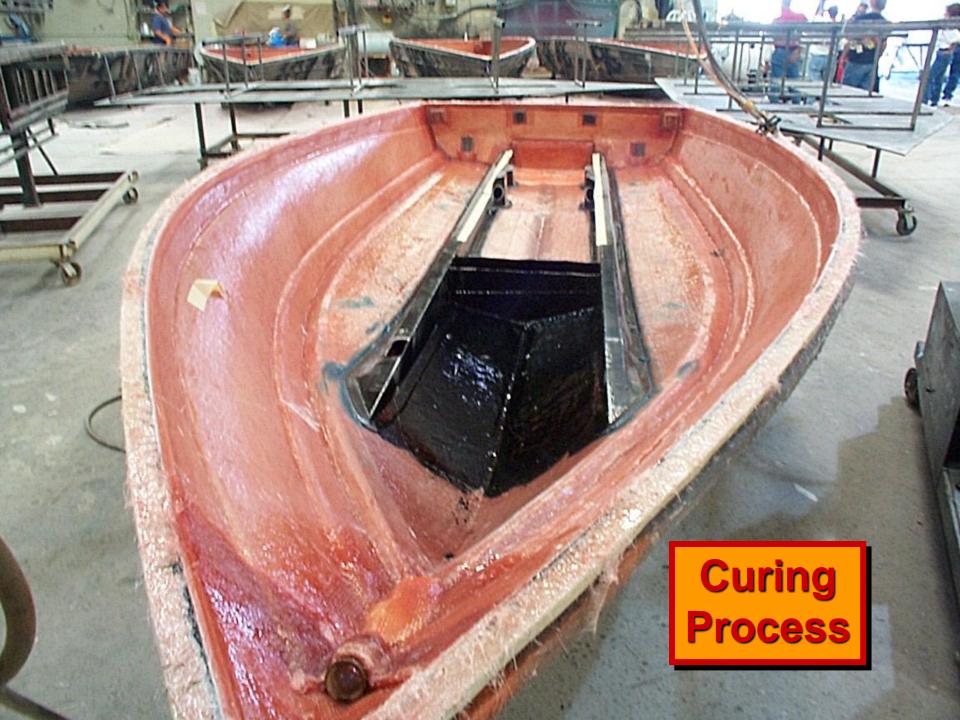
Gel Coat Application : Spray Booth

Gel Coat : Spray Booth

10 Intern 1-57

LGG

Fiberglass Reinforcements


10

HILITH

CONCERCION OF THE OWNER

Saturating with Resin

Assembly Line

Finished Product

CONTRACTOR OF

Let's Discuss Fabrication of Cultured Stone

Types of Cultured Stone

Cultured Marble Cultured Granite Cultured Onyx

Cultured Marble

• Consists of \rightarrow

- Crushed Marble & Stone (Mined)
- High Strength Polyester Resin
- Protective Gel Coat on the Surface

- Mixture is Poured into a Mold
- Allowed to cure and shrink
- Part is trimmed and polished

Protective Gel Coat

Fabrication of Cultured Marble

Gruber

Cultured Marble Products

Trimming & Polishing

000

6.4

Cultured Onyx

• Consist of \rightarrow

- Alumina Trihydrate
- Polyester Resin Content 28 35%
- Protective Gel Coat on the Surface

- Products are translucent
- They have an added visual depth or a 3-D effect

Cultured Granite

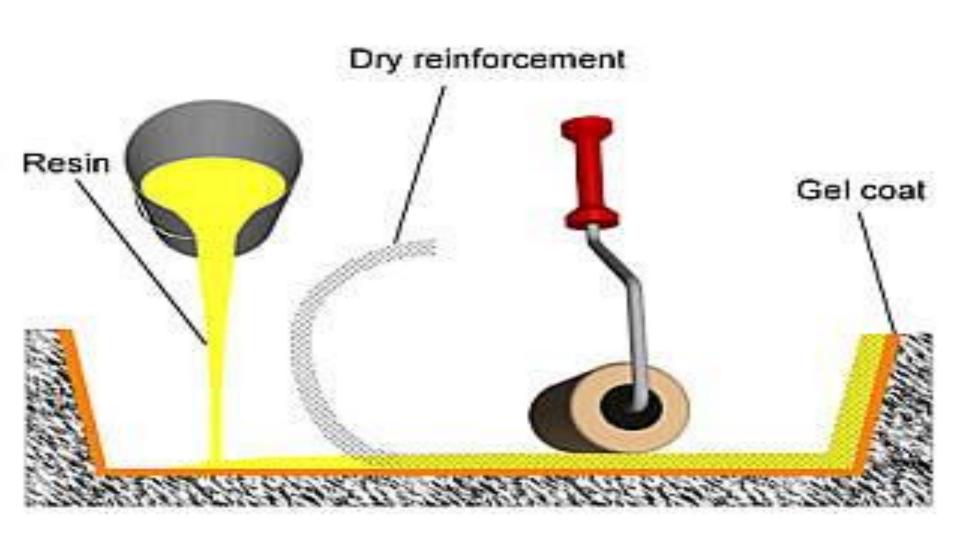
• Consists of \rightarrow

Crushed Stone & Mineral Chips
Polyester Resin Content 40%
Protective Gel Coat

- Offers the Beauty of Quarried Granite
- Low Cost
- Stain Resistant Coating

Curing Process

A REAL PROPERTY AND A REAL POINTS IN


Let's Discuss Open Molding Operations

Process and Control

 Types of Open Molding Operations -Hand lay-up & Spray-up -**Continuous lamination** -**Pultrusion** - Filament winding -Casting or molding – Infusion or scrimp

Hand Lay-Up

- Simplest Type / Very Flexible
- Apply Gel Coat, Resin, Fiberglass by Hand
- Roller or Brushes Used for Resins
- High Strength to Weight Ratio
- High Styrene Emissions
- Suitable for Prototypes & Low Volume Production

Let's Discuss Hand Lay-Up Product : Surf Board Manufacturing

UNUMPORTAL INCOMPANY

63H ROG ... First Step : Foam Core H-1/8EX Flat Cable to 2 CINEK FORM 1st QUALITY SUPERLIGHT

Foam Core : Shaping & Sizing

Fiberglass & Resin Applied to Core

Grinding & Sanding Operation

Grinding & Sanding Tools

Waxing & Coating Operation

Curing Operation

Let's Discuss Carbon Fiber Epoxy Resin Mfg.

Bicycle Frame Components

Carbon Fiber & Mold

Top & Bottom Half of Mold

110

0

00000000

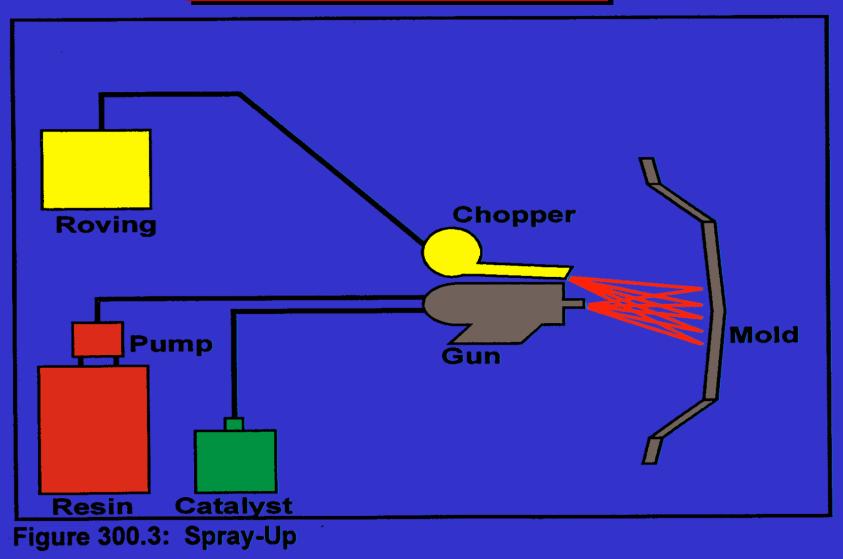
1 Bernard

Bicycle Frame : After Curing Process

Day F

Spray Painting Operation

Bicycle Frame : Finished Product


- Versatile Process
- Cost Effective Method of Producing Large Open-Molded Parts

Chopped Fiberglass is Sprayed With
 → Catalyzed Resins onto Gel Coat

 → Compacted

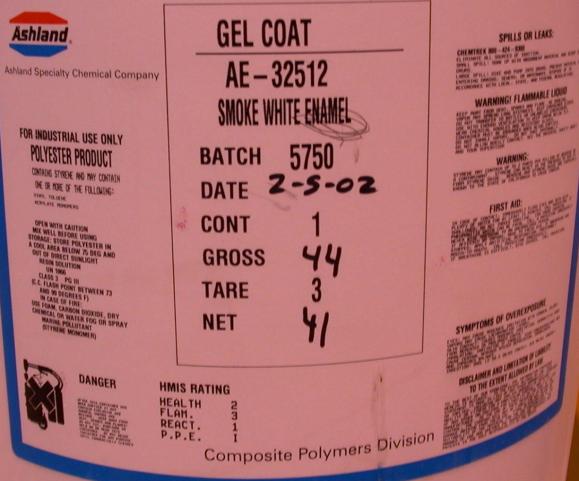
Chopped Fiberglass Spray-up Operation

AND NEW YORK

Controlled Spraying

Reduces styrene emissions Increases transfer efficiency Low fluid tip pressure Employee gun handling training Close containment flanges

Gel Coat Application



Gel Coat Application in a Spray Booth

· 323 - 17-

15

Gel Coat Storage

SPILLS OR LEAKS:

CHEMTREK 800-424-9300 LININATE ALL BEAMEYS OF IDENTION PRAL DEFILE SEME OF WITH AND MERINE ALL DISK AND PARE INTO MANY PARTY OF A

WARNING! FLAMMABLE LIQUID.

FIRST AID.

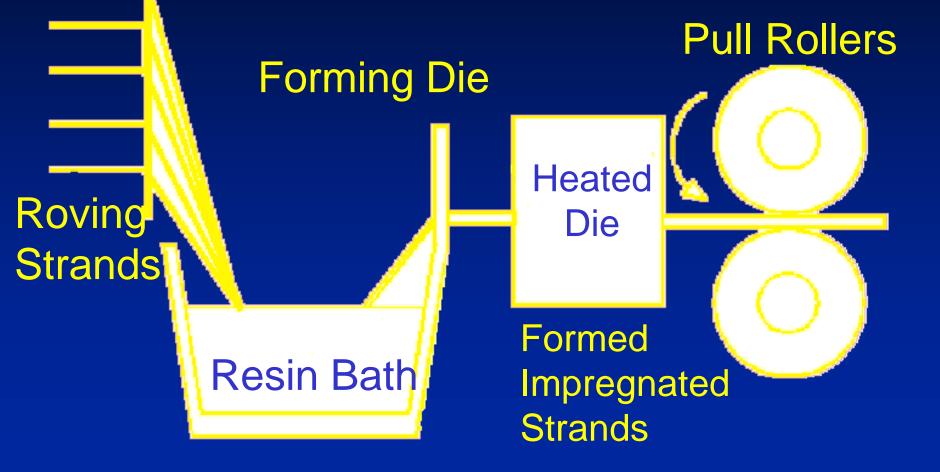
TOMS OF OVEREXPOS

Approved Spray Guns

- High Pressure Airless Guns
- Air-Assist Airless Guns
- Electrostatic Spray
- High Volume Low Pressure (HVLP) *
- Fluid Impingement Technology (FIT) Spray Gun *

HVLP Spray Gun

Fluid Impingement Technology Spray Gun

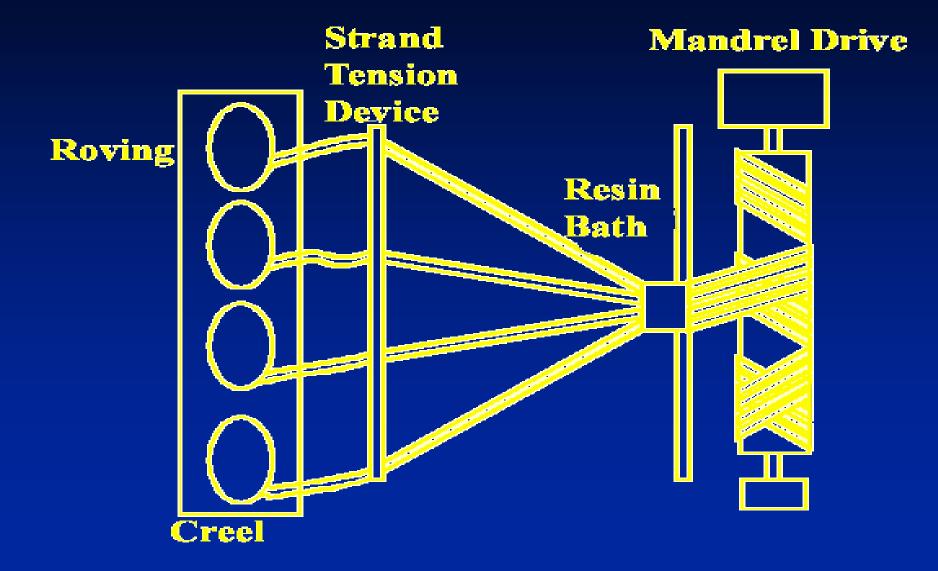


Pultrusion

- Pulled extrusion process
- Fiberglass under tension
- Immersed in Resin bath or injection
- Pulled through forming dye
- Pulled through heated dye to cure
- Produces flat stock for cutting
- VOCs at resin bath and forming area

Pultrusion

Strand Tension Device

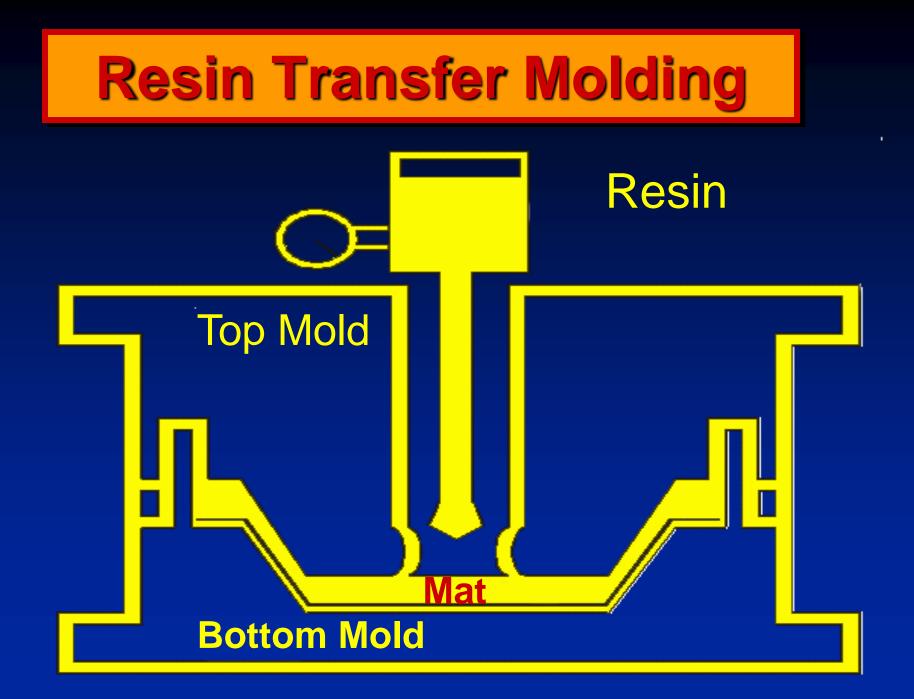

Filament Winding Operations

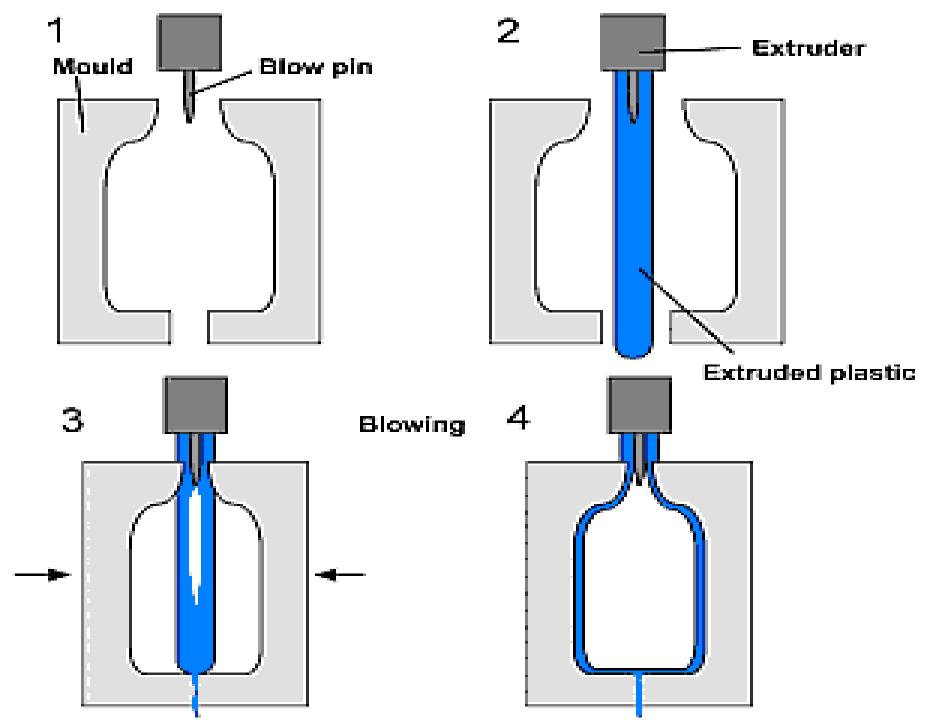
Used in Manufacture of:

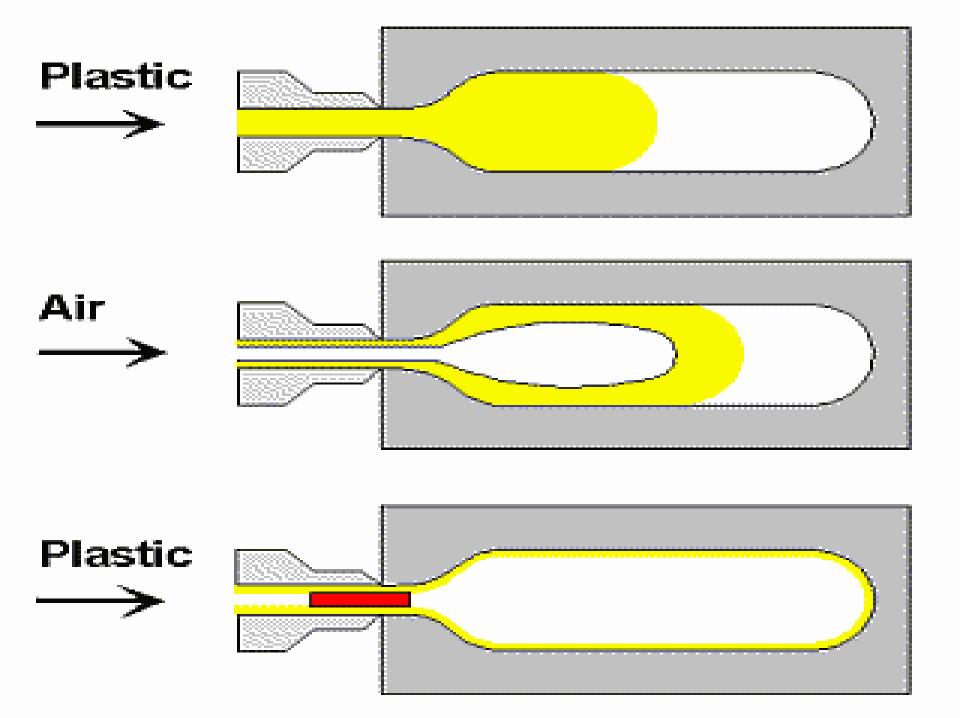
 large pipes and storage tanks
 hollow vessels subject to high internal pressure

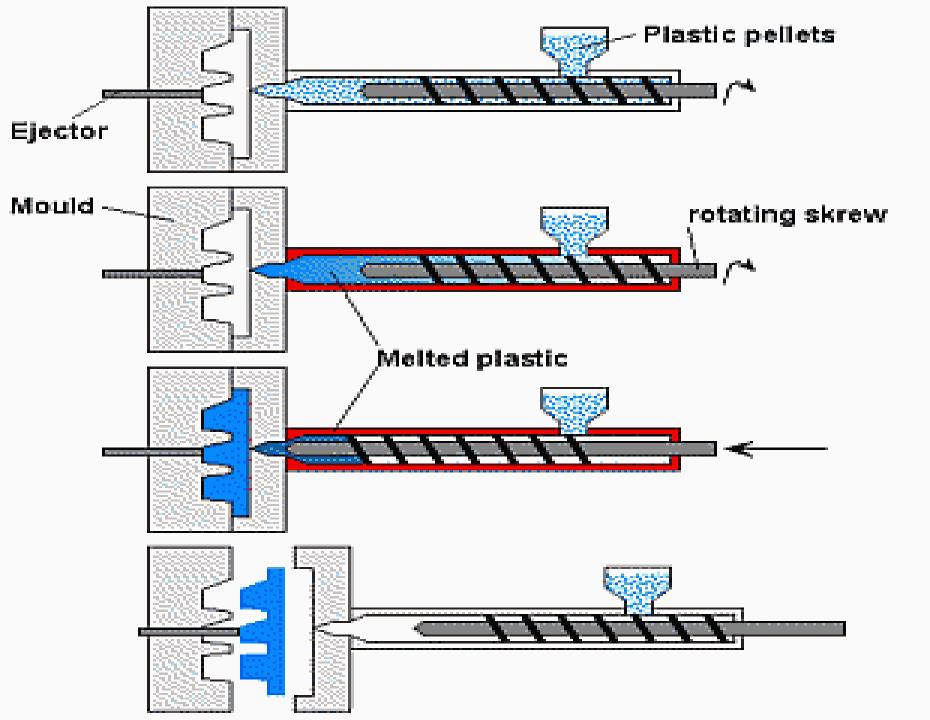
- Strand Rovings are Pulled under Tension into a Resin bath
- Wound into Shape & Cured

Filament Winding




Let's Discuss Closed Molding Operations


Resin Transfer Molding


- Gel Coat is Applied to Mold
- Reinforcing Fibers are Placed into the Mold Cavity
- Mold Halves are Closed & Clamped
- Liquid Resin is Injected into the Mold Cavity

→ Suitable for High Vol. Production
→ Reduced VOC emissions

Let's Discuss Emissions & Controls

Emission Sources

- Gel coat Styrene Emissions

 Application (atomization)
 Curing
- Resin
 - -Styrene most common monomer
- Mixing
- Clean-up solvents

Application Step	38% Monomer	25% Monomer
Loss due to Atomization	5-7%	2-4%
Loss due to Curing	6-11%	4-9%
Total Loss	11-16%	8-11%

Process Materials

- General Purpose Resins : 35% styrene
- Specialty Resins : <50% styrene
- Most AQMD Rules : 35% styrene
- Tough Low Profile Resins <35% styrene — Higher viscosity
 - Need better surface prep
 - -Need good wet-out procedures

- Acetone (widely used)
- Methyl Ethyl Ketone (MEK)
- Dibasic Ester (DBE)
 - less volatile, less flammable than acetone
- Water-based resin emulsifiers
 detergent cleaners

 Cleaning with Compounds 50 to 200 g/liter VOC -Closed containers **–Self-Closing Containers** -Styrene soaked rags in closed containers

Open Containers

Potential Emissions ??

TED

Let's Discuss Styrene Emissions

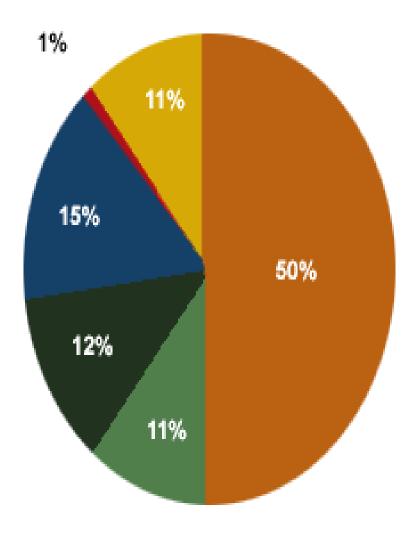
Styrene : HAP Source

- Unsaturated aromatic HC
- Petroleum By-Product
- In Polyesters :
 - → Reactive Diluent
- Styrene : HAP (Hazardous Air Pollutants)

Styrene : HAP Source

- Foamed or Expanded Polystyrene : EPS
- Exceptional insulation properties

- Foam cups & containers
- Foodservice products
- Packaging & protecting


Styrene Emissions Determination Models

- A 540 lb. Drum of Gel Coat
 → 38% VOC
 - Applied by "Uncontrolled Spray" Techniques
 - ⇒ Emit 100 lb. of Emissions
- Two Drums of Gel Coat/day
 ⇒ 25 Tons of Emissions/Yr

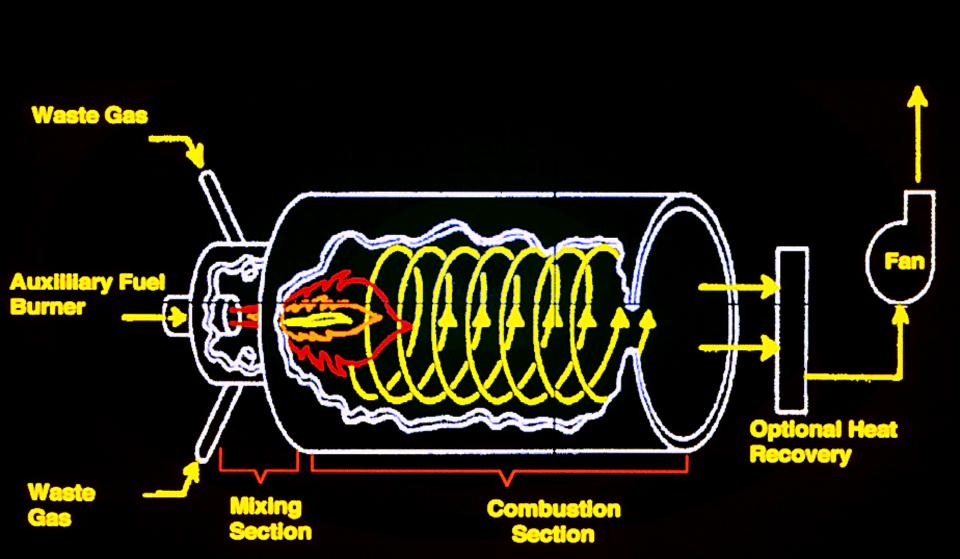
6 Major Styrene Resin Families (20 million tons, more than 40 billion pounds)

- PS Polystyrene cups, plates, toys, packaging, dairy containers, building constr., cassettes
- ABS Acrylonitrile-butadiene styrene appliances, transportation, business machines
- SAN Styrene-acrylonitrile appliances, battery castings, packaging, automotive materials, housewares
 - SBR Styrene-butadiene rubber tires, automotive applications

- SBL Styrene-butadiene latex carpet and upholstery backing, coatings
 - UPR Unsaturated polyester resins boats, bath tubs, shower stalls, spas, hot tubs, cultured marble

Industry Estimates

Control of VOC Emissions


- Process change to control monomer emissions
- Low VOC Gel Coat
- Change from acetone to less volatile solvent
- Reclaim acetone (distill)
- ADD-ON equipment

Add-On Control Methods

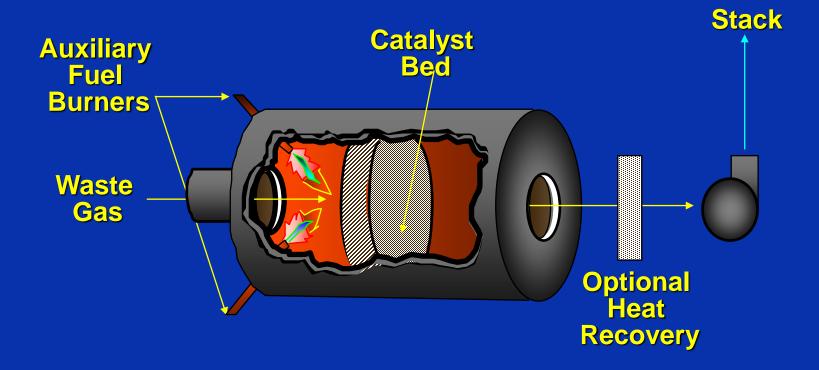
Incineration
Absorption
Adsorption
Condensation

Thermal Oxidizer/Afterburner

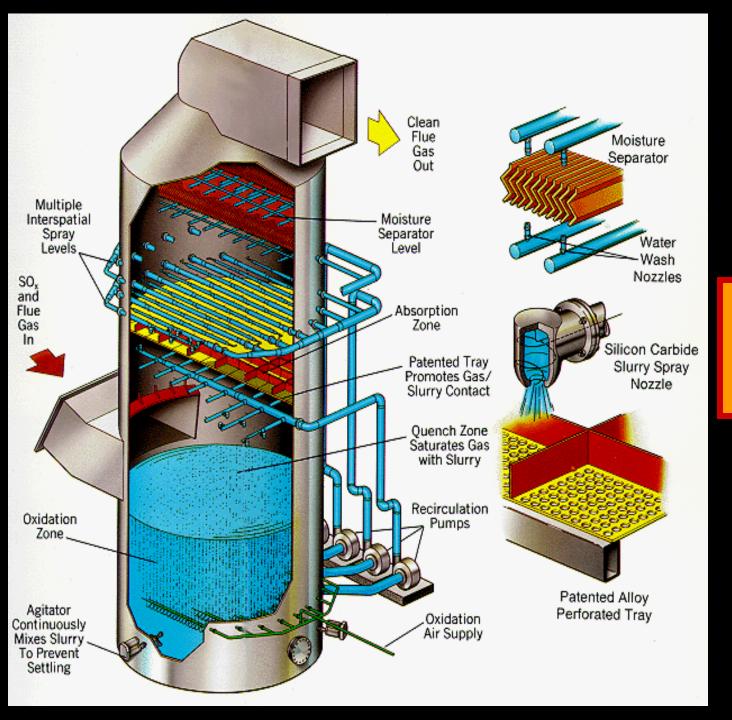
Thermal Incinerator

Venting to Oxidizer

A ZELY AN ZEFATE

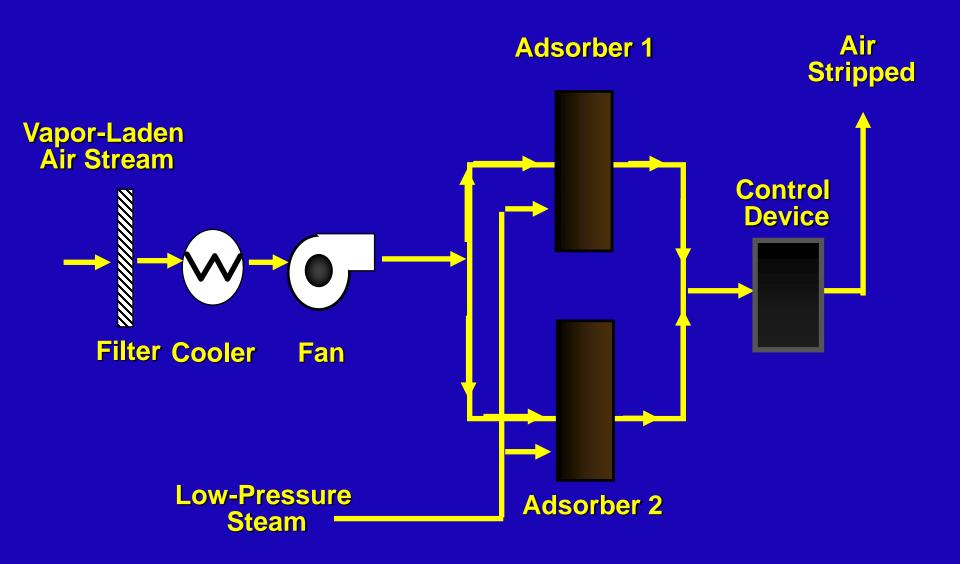

Bett at at

N/


201-

THE SERVICE STREET, ST

Catalytic Oxidizer/Incinerator



Wet Scrubber

Carbon Adsorption System

Remediation System with Carbon Adsorbers

Regulatory Regulrements

Regulatory Requirements

- Federal, state, and local requirements
- Resin specific limits
- Permit requirements
- Monitoring requirements
- Visible emission limits
- Nuisance regulations
- Breakdowns & variances.

Federal Regulations

- 1990 Clean Air Act
 - NESHAPS : National Emissions Standards for Hazardous Air Pollutants
 - -HAPS: Hazardous Air Pollutants
 - -MACT : Maximum Achievable Control Technology
 - -New & Existing Major Sources

Federal Regulations

- 40 CFR Part 63 Subpart VVVV -- NESHAP for Boat Manufacturing
- 40 CFR Part 63 Subpart MMMMM -- NESHAP for Flexible Polyurethane Foam Fabrication
- 40 CFR Part 63 Subpart U -- NESHAP for Group I Polymers & Resins
- 40 CFR Part 63 Subpart JJJ -- NESHAP for Group IV Polymers & Resins

Federal Regulations

- 63 WWWW Reinforced Plastics Composites Production
- 63 III Flexible Polyurethane Foam Production
- 63 60 Area Source Flexible Polyurethane Foam
- 63 YY Generic MACT Acetal Resins, Polycarbonate, etc.
- 63 W Group II Polymers and Resins
- 63 000 Group III Polymers and Resins
- 63 6L Area Source Acrylic and Modacrylic Fiber Production
- 63 7H Polyvinyl Chloride and Copolymers Production
- 63 6D Area Source Polyvinyl Chloride and Copolymers.
- 63 4H Wet Formed Fiberglass Mat
- 60 HHH NSPS for Synthetic Fiber Production
- 60 VVV NSPS for Polymeric Coating for Supporting Substrates

Operation (Open Mold – Boat Mfg)	Application Method	HAP Weight %
Tooling Gel Coat	Any Method	40%
Pigmented Gel Coat	Any Method	33%
Clear Gel Coat	Any Method	48%
Production Resin	Atomized (Spray)	<mark>28%</mark>
Tooling Resin	Atomized (Spray)	30%

Polyester Resin Material	Monomer Weight %
General Purpose Resin	<35%
Specialty Resin	< 50%
Clear Gel Coat	<50%
Pigmented Gel Coat	<45%

Typical Permit Conditions

- Daily Emissions Limits
- Gel Coat Monomer Content (weight %)
- Resin Monomer Content (weight %)
- Amount of Material Used
- Cleaning Material
- Logs

Inspection Procedures

Market a

Reasons for Inspections

S

 Compliance determination Complaint investigation Source plan approval Review or renewal of permits Special studies.

Pre-Inspection

- Prepare inspection report form
- File review
- Regulation review
- Equipment check
- Pre-entry & entry
- Pre-inspection meeting
- Permit check.

Inspection

- Visible emission evaluation
- General upkeep & maintenance
- Maintenance records
- Operational records
- Any open containers?
- Self-closing containers
- Rags and waste in closed containers

Closed Containers

Vin He 3

MULAGLE LICOUD

ACETONE

ERIAI Apples

CONTAINALENT MALET MALET

Potential Emissions ??

SHINN

FOR FINAL

Catalyst (MEKP) Emissions

0

Self - Closing Container

HE IR JE

Inspection

- Coating Application Equipment
- VOC content of solvents and other chemicals
- MSDS
- Spray Booths
- Dust control equipment

 Filters and screens
 Cleaned as often as necessary

Compliant Spray Gun

Spray Booth Filters

Filter Inspection

Inspector Safety

Proper equipment Plant evacuation Inhalation hazards Hazardous materials Chemicals & Machinery

