

Observing Source Tests

Course Overview

Planning a Source Test
Source Test Basics
Observing the Test
Problem Areas
Reviewing Test Data

see a source test in your future

□ <u>For the Agency :</u>

Provide Data to Evaluate Compliance
 Provide Data to Formulate Control Strategies
 Provide Data for Regulation Development

Purpose of Source Testing

□ For the Facility :

Provide Data to Evaluate Compliance Status Meet Permit-To-Operate (PTO) Conditions Provide Info. on Control Device Efficiency Provide Info. for Design of New Processes Provide Info. on Process Operation Certify CEMs Certify PEMS

Federal & State Regulations

Authorities Requiring Source Testing

Federal D NESHAP **D** Title V Permits State and Local Requirements Enforcement Permitting Emissions Inventory

Evaluate Representativeness of a Test

- Process & Control Equipment Operation
- Sampling Port Location
- Sample Collected
- Sample Recovery & Analysis
- Report

Represent the Interests of Agency

- Tests Satisfy the Needs of the Agency
- Planning & Pretest
- During the Test
- Post Test

QA/QC Officer

Is the Source Test Legally Defensible?

Evaluate the Test Activities

Evaluate the Test Company/Team Qualifications & Competence

Evaluate the Laboratory Qualifications

& Competence

Reliable & Appropriate Test Methods
 Chain-of-Custody

Role of the Observer (Cont'd)

Observer Behavior

 Test is Successful
 Cooperate with Both Facility & Testers
 Specific & Firm Requests
 DO NOT Intrude or Interfere Unnecessarily

Test Protocol

Test Protocol

- Name & Location of Tested Facility
- When is Test (Adequate Notification?)
- Purpose of Test

- Testing Contractor (AETB?)
- Facility Description
- Process Description
- What is to be Tested

Test Protocol

- Regulatory Requirements
- Test Methods to be Used
- Schedule of the Test

- Test Location Configuration & Type
- Number & Size of Test Ports
- Process Rate to be Tested
- Report Requirements
- Unusual Requirements

Firefox 💌			
US EPA 2013 Protocol Gas Verit	fication Progra × Stack Testing Accreditation Council × +	sand the statement was	
🗲 🔶 🛞 www.be	tterdata.org/accreditedorganizations.htm	☆ マ C Socie	۹ م
🙆 Most Visited [] Alte S	tiche, Kanton Gla 🥹 Getting Started 😹 Latest Headlines 📙 Translation Sites 블 NCOA 🚡 Google Docs - Home 🏭 Renewable &	Alternati 🗍 Boiler Efficiency 门 ub043.pdf (application	Bookmarks
	COUNCE		
	Stack Testing Accreditation Council		
forme Page Get Accred	dited Accredited Organizations About STAC Membership Resources Training Contact		
	Accredited Organizations		
	Currently Accredited Organizations:		
	Interim Accreditation Note: Interim Accreditation confers all the benefits and privileges as Final Accreditation. The only difference being that it requires a successful field audit during the interim period. Presently the field audit procedure is being finalized and an outline and text of early drafts are posted.		
	Air Compliance Testing		
	Air Hygiene International		
	Air Kinetics		
	Airtech Environmental Services		
	Avogadro Environmental Corporation		
	Avogadro Group		
	CK Environmental		
	Clean Air Engineering		
	C.E.M. Solutions		
	Dominion Generation		
	Energy and Environmental Measurement (EEMC)		
	ENTEC Service		
	GE International, Inc		
	Golden Specialty		
	Grace Consulting		
	Horizon / AMTest		
	Integrity Air Monitoring		

Testing Access & Hazards

Testing Access

□ <u>Access to the Stack</u>

- Getting Equipment to the Stack, Vehicle Access
- How far up is the Testing Platform?
- Getting Personnel & Equipment up the Stack
- Is the Platform Secure?

Logistics

- Are there Electrical Outlets at the Stack?
- What Load will the Electrical Circuits Hold?
- Explosion Proof Electrical Equipment Required?

Testing Platform

P

Stack Platform

1100

ø

- What are the Stack Emissions?
 What Heat & Gas Hazards Exist?
 What are the Facility Health & Safety Procedures?
 Are Entry, Confined Space, or
- Other Permits Required?

What Protective Equipment is Needed? Normally? In the Event of an Accident or Plant Upset? What are the Plant Safety Warnings?

Weather Hazards
High Winds
Heat Lightning
Cold, Ice, & Snow

Plant Malfunction

Height & Falling Object Hazards

Protective Safety Equipment

- Eccentric & Tapered Stacks
- Horizontal Ducts

- Unconfined Flow
- High Temperatures
- Saturated Stack Gas

Problem Sources

Low Flow Rate

- Cyclonic Flow
- Condensables
- Reactive Compounds
- Soot Blowing

High Pressure Steam

Stack Access

Observing the Source Test

Physical Inspection Points Procedural Inspection **Points** Calculation Inspection **Points** Preliminary Data Collection **QC** Audits

Documentation

What Process & Control Room Data Area **Available?** What Data Are Required for the Test? What Data Are Required to Document Process **Conditions?** What Data Are Required to Document **Continued Compliance?** Is Any Control Room Data Confidential?

Checklists

Ensure All Inspection Points Are Covered

Ensure All Data Points Are Properly Collected

Should Be Reviewed & Modified for the Source Being Tested
Let's Discuss Basic Test Methods

Basic Test Methods

- Method 1 Sampling Point Location
- Method 2 Stack Gas Velocity

- Method 3 Dry Molecular Weight
- Method 4 Moisture Content of Stack Gases
- Method 5 Particulate Emissions
- Method 6 Sulfur Dioxide Emissions
- Method 7 Nitrogen Oxide Emissions
- I Method 10 Carbon Monoxide Emissions

Sample & Velocity Traverses for Stationary Sources

Specifies Both the Sampling Site Location & the Location of the Sampling Points

The More Convoluted the Ductwork, the More Points that Will Need to be Tested

Stack Velocity Stratification

Ideal: Port is 8 duct diameters downstream of A and 2 duct diameters upstream of B

Sampling Criteria

7

HANDI-BA

70

Duct Diameters Upstream from Flow Disturbance (Distance A)

Duct Diameters Upstream from Flow Disturbance* (Distance A)

Rectangular Duct Cross-Section Layout

Ē

# of Traverse Points	Matrix
9	3 x 3
12 (example on next slide)	4 x 3
16	4 x 4
20	5 x 4
25	5 x 5
30	6 x 5
36	<mark>6 x 6</mark>
42	7 x 6
49	7 x 7

Rectangular Duct Traverse (12 points)

Traverse	Number of traverse points on a diameter											
Point #	2	4	*6	8	10	12	14	16	18	<u>20</u>	<u>22</u>	24
1	14.6	6.7	4.4%	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6%	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6%	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4%	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4%	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6%	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	<mark>82.3</mark>	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	<mark>88.2</mark>	79.9	71.7	61.8	38.8	31.5	27.2
11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
13							94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	83.5	78.2	72.8
16								98.4	92.5	87.1	<mark>82.0</mark>	77.0
17	Location of								95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
19										96.1	91.3	86.8
20	I raverse Points in									98.7	94.0	89.5
21											96.5	92.1
22	Circular Stacks										98.9	94.5
23												96.8
24												98.9

Particle Stratification & Plane of Bend

Cyclonic Flows

Calculation Inspections

Confirm Input Data **Dimensions** Calculate Equivalent Diameter (If Stack is Not Circular) Location of Disturbances Traverse Points Evaluate Number of Points

Evaluate Location of Points

Equivalent Diameter $D_e = \frac{2 LW}{L+W}$

Determination of Stack Gas Velocity and Volumetric Flow Rate

 Method Uses Type S Pitot Tube
Method Also Used to Certify Flow Monitors

Stack Volumetric Flow Rate : $Q_s = A_s V_s$

Volume of a Gas vs. Absolute Temperature

Absolute Temperature Degrees Rankine: R R = °F + 459.49 Degrees Kelvin: K K = °C + 273.16

Atmospheric or Barometric Pressure

Gauge Pressure

Absolute Pressure $P_a = P_b + P_g$

Differential Pressure Measuring

Differential Pressure Measuring

Type "S" Pitot Tube & Orifice Meter

Standard Pitot Tube

Type S Pitot Tube Construction

(C)

Physical & Procedural Inspections

Pitot tube

- Construction & Condition
- Alignment (Bent, etc.)
- Orientation & Attachment to Probe
- Calibration
- Leak Checked (Both Sides)
- Pressure Instruments
 - Oil Manometer Leveled & Zeroed
 - Magnehelic Gauge Calibrated
- Cyclonic Flow Checked

Roll angle

Pitch angle $+\phi$ - 0 Vertical

Calculation Inspections

Confirm Input Data

- Stack Pressures
- Stack Temperature
- Calibration Factors

∆p - Velocity pressure

The difference between the two pressure taps of a pitot tube (determined by averaging the square roots of all the Δp readings. Note -- DO NOT take average of readings and then take the square root).

Stack Gas Velocity

□ $C_p = 0.84$ □ $t_s = 345^{\circ}C$ □ $T_s = 345^{\circ}C + 273^{\circ}C$ □ $\Delta p = 38.1 \text{ mm H}_2O$

 $P_b = 680 \text{ mm Hg}$ $M_s = 28.2 \text{ g/mole}$ $p_s = 35 \text{ mm H}_2O$ $K_p = 34.97 \text{ (metric)}$

$$v_s = K_p C_p \sqrt{\frac{T_s \Delta p}{P_s M_s}}$$

32.5 m/s = 34.97 x 0.84 $\sqrt{\frac{(345+273) \times 38.1}{(680+35/13.6) \times 28.2}}$

Stack Volume Stack Area Flow

Stack Gas Volumetric Flow Rate $Q_s = A_s V_s$ $Q_s = A_s K_p C_p \left(\frac{T_s \Delta p}{P_s M_s}\right)$ Q_{sd} (ft³/hr) = 3600 x (1 - B_{WS}) $A_s V_s \frac{T_{STD} P_s}{T_s P_{STD}}$

Gas Analysis for Determination of Dry Molecular Weight

Determines %CO₂, %O₂, & CO
Balance is N₂
Needed for Both Pitot Tube Equation & Isokinetic Rate Equation

Partial Pressure

0 0, co, CO, N, 0, N, N, CO, 0,
ORSAT Analyzer

Oxidation Reduction Selective Absorption Technique

₽

Orsat Analyzer

Orsat Analyzer

Fyrite Gas Analyzer for CO₂ or O₂

Electrocatalytic O₂ Analyzer

NDIR CO₂ Analyzer

Molecular Weight by Mole Fraction

 $\Box CO_2 = 65 \text{ mm Hg}$ $\Box O_2 = 55 \text{ mm Hg}$ (8.1%) (9.6%) \Box CO = 8 mm Hg $\square N_2 = 552 \text{ mm Hg}$ (81.2%) (1.1%) $\square P_b = 680 \text{ mm Hg}$ $M = \Sigma B_i M_i$ $\frac{55}{680} \times 32 + \frac{8}{680} \times 28 + \frac{65}{680} \times 44 + \frac{552}{680} \times 28$ = 30.0 g/mole

Fuel Type	Fa		F.		F,		Fo
	dacm/J (x10 ⁻⁷)	dacf/ 10º BTU	wscm/J (x107)	dacf/ 10º BTU	ecm/j (x10'')	ecf/ 10º BTU	
Coal:							
Anthracite	271	10,100	2.83	10,540	0.530	1,970	1.016-1.130
Bituminous	2.63	9,780	2.86	10,640	0.484	1,800	1.083-1.230
Lignite	265	9,860	3.21	10,950	0.513	1,910	1.016-1.130
Oil	2.47	9,1901	277	10,3204	0.383'	1,4204	1.260-1.413
							1.210-1.370*
Gas							
Natural	243	8,710	2.85	10,610	0.287	1,040	1.600-1.836
Propane	2.34	8,710	2.74	10,200	0.321	1,190	1.434-1.586
Butane	2.34	8,710	2.79	10,390	0.337	1,250	1.405-1.553
Wood	2.48	9,240			0.492	1,830	1.000-1.120
Wood Bark	2.58	9,600			0.516	1,920	1.003-1.130
Municipal Waste	2.57	9,570			0.488	1,820	

F

F

<u>a</u>

C

ť

0

1

S

ORSAT Analysis Check by F_o

 $\Box O_2 = 8.1\% \qquad \Box CO_2 = 9.6\%$ $F_o = \frac{20.9 - \%O_2}{\%CO_2}$ $F_o = \frac{20.9 - 8.1}{9.6} = 1.33$

Table value for oil combustion = 1.260 - 1.413

ORSAT analysis is OK

Determination of Moisture Content in Stack Gas

- Needed for Both Pitot Tube Equation & Isokinetic Rate Equation
- □ <u>4 Methods Can be Used</u>

- □ Saturation Pressure: T_{GAS}
- Psychrometry: Wet & Dry Bulb Temp.
- Adsorption: Silica Gel Tubes
- □ Condensation: Impingers (Vol of H₂O ÷ Vol of Gas)

Calculation & Procedural Inspections

No Spillage Measured Correctly Preliminary **D** Final Dry vs Wet Molecular Weight $M_{saturated} = M_{dry} (1 - B_{ws}) + 18B_{ws}$

I $M_d = 30.0 \text{ (dry)}$ **I** $B_{ws} = 15\%$

 $M_{s} = M_{d} (1 - B_{ws}) + 18B_{ws}$ $M_{s} = 30.0 (1 - 0.15) + 18 \times 0.15$ = 28.2 g/mole

 $B_{ws} = Vol of H_2O \div Vol of Gas$

Determination of Particulate Emissions from Stationary Sources

Isokinetic Sampling -- The sample is drawn into the probe nozzle at the same rate as it is moving in the flue gas.

Iso : Same as

Kinetic : Motion

Isokinetic Source Sampling System

Method 5 Sampling Train

Nozzle Design and Placement

Sample Nozzles

- Construction (SS or Glass)
- Alignment & Installation on the Probe
- Dents, etc.
- Calibration
- Rinsed During Sample Recovery

Nozzle Diameter

$$D_{n} = \sqrt{\frac{K_{D}Q_{m}P_{m}}{T_{m}C_{p}(1-B_{ws})}} \sqrt{\frac{T_{s}M_{s}}{P_{s}\Delta p_{est}}}$$

K_D = 6.07 (0.0358 English units)

$D_n = 0.576 \, cm$

6.07x0.021x683.6 (345+273)x28.2 (28+273)x0.84x(1-0.15) (680+35/13.6)x38 **D**_n = [/]

- $\Box T_m = 28^{\circ}C$ □ C_p = 0.84
- **P**_m = 683.6 mm Hg
- $\Box Q_m = 0.021 m^3$
- $\Box K_{\rm D} = 6.07$

- □ B_{ws} = 0.15

 - $p_{s} = 35 \text{ mm H}_{2}O$

 $\square \Delta p_{est} = 38 \text{ mm H}_2O$

- \square M_s = 28.2 g/mole

- **T**_s = $345^{\circ}C$

Probe Assembly

- Temperature Probe
 - Condition
 - Calibrated
- Probe

- Long Enough to Reach, Not Too Long
- Heated
- Sor Glass Liner
- Marked (Heat Resistant) for Traverse Points
- Rinsed During Sample Recovery

Modular Sample Unit

Method 5 Glassware

Heated Filter Box

Physical Inspections

Sampling Case - Hot Side Heated (Check Method for Proper Temperature) Temperature Gauge Installed

Glassware Properly Assembled

Cold Side Glass Impingers

Physical Inspections

 Sampling Case - Cold Side
 Glassware Properly Set-Up
 Proper Solutions in Impingers
 Ice & Water Bath -Exit Temperature

Water Knock-Out

Isokinetic Control Console

Umbilical Fittings (Pitot and Sample Inlet)

Manometer Fittings

Dry Gas Meter

Dual Inclined Manometer

Gas Sample System Control Console

Detachable Pump Housing

Pump

- Non-reactive and leak free
- Dry gas meter
 - Leak free
 - Calibrated
- Orifice meter
 - Calibrated

Ŧ

Constant Rate Proportional Isokinetic

Let's Discuss Isokinetic Sampling

Isokinetic Sampling

Over Isokinetic Sampling

Under Isokinetic Sampling

=

75% Isokinetic

 $v_{n} = 0.75 v_{s}$

- $m_n = 0.42 \text{ grams/min}$
- $Q_n = 0.01875 \text{ m}^3/\text{min}$

 $c_n = 0.42/0.01875 = 22.4 \text{ g/m}^3$

 $C_s = ? (C_s < C_n)$

Nozzle Misalignment

Orifice Meter (Sample Flow Rate) Settings

 $\Delta H = K_{H} D_{n}^{4} \Delta H_{@} C_{p}^{2} (1-B_{ws})^{2} \frac{M_{d} T_{m} P_{s}}{M_{s} T_{s} P_{m}} \Delta p$ \downarrow K factor - used for rapid calculation of ΔH

K_H = 0.803 (846.72 English units)

K Factor and ΔH

□ K_H = 0.803

- **D**_n = 0.576 cm
- $\Box \quad \Delta H_{@} = 49.3 \text{ mm } H_2 O$
- □ C_p = 0.84
- 🛯 🛚 🛚 🗠 🛛 🗠 🗠 🗠
- $\Box \quad \Delta p = 38.1 \text{ mm } H_2 O$

M_d = 30.0 g/mole

$$\Box T_m = 28^{\circ}C$$

$$\mathbf{p}_{s} = 35 \text{ mm H}_{2}\mathbf{O}$$

 $\Delta \mathbf{H} = 0.803 \times (0.576)^4 \times 49.3 \times 0.84^2 (1-0.15)^2 \frac{30.0 \times (28+273) \times (680+^{35}/_{13.6})}{28.2 \times (345+273) \times 683.3} \times 38.1$

K Factor = 1.15

 $\Delta \mathbf{H} = \mathbf{K} \ge \Delta \mathbf{p} = 43.81$

 $\Delta \mathbf{p} = 38.1$

Console Adjustment

Procedural Inspections

Sampling Points

- Properly Laid Out
- Move Between Points on Time
- Move Between Points Quickly

- Data Read & Recorded Quickly & Accurately
- Delta H Calculated & Adjusted Quickly

Dry Gas Meter

- Start/Stop Times & Volume Readings Accurately Recorded
- Sampling Times & Volume Requirements Met

Percent Isokinetic

 $\frac{T_{s}[V_{lc}K+V_{m}/T_{m}(P_{b}+\Delta H/_{13.6})]}{60 \Theta \Box A_{n} V_{s} P_{s}}$

K = 0.003454 mm Hg m³/ml K (0.002669 in Hg ft³/ml °R)

% = 99.7%

60x48x2.6x10⁻⁵x32.5x(680+35/13.6)

 $\%] = 100 \frac{(345+273)[113\times0.003454+1.008/(28+273)(680+43/13.6)]}{(345+273)(680+43/13.6)]}$

Percent Isokinetic

- $T_m = 28^{\circ}C$
- $U V_{lc} = 113 ml$

- □ **○** = 48 min

 $\Box T_s = 345^{\circ}C$

- \Box V_m = 1.008 m³

- $\Box A_n = 2.6 \times 10^{-5} \, \text{m}^2$ $V_{s} = 32.5 \text{ m/s}$
 - $p_{s} = 35 \text{ mm H}_{2}O$

P_{b} = 680 \text{ mm Hg}

 $\Box \Delta H = 43 \text{ mm H}_2O$

Procedural Inspections

Sample Recovery Sampling Completion Procedure Leak-Check Cool-Down Probe & Glassware Cleanup Impinger Recovery Filter Recovery

Sampling Train Leak Test

Probe Brushing

Probe Rinse

MA K

Filter Recovery

Physical Inspections

Sample Properly Recovered

- Good Particulate Deposit No Evidence of Leaks
- Impinger Solution Weighed &/or Recovered After Sampling
- Rinse Front Half of Filter Holder Back Half Also
- Probe Properly Cleaned

Filter Properly Weighed

Cascade or Inertial Impactor

ict pour

GENERAL SWISS MADE

45-Jopp-

Stack Gas Analysis

Electromagnetic Spectrum Gamma rays X rays UV IR Microwave FM AM Long radio waves

 10^{-4}

 10^{-6}

 10^{-2}

100

 10^{2}

 10^{4}

 10^{6}

 10^{8}

m

 10^{-14}

10 -16

 10^{-12}

 10^{-10}

 10^{-8}

Normal Vibration of SO₂ Molecules

Simplified Stack Sample System

Basic Extractive System

Source Test Analytical Techniques

Infrared Methods Differential Absorption **Gas Filter Correlation** Fourier Transform Infrared Ultraviolet Methods Differential Absorption Second Derivative Spectroscopy Visible Light Scattering & Absorption

Source Test Analytical Techniques

Luminescence Methods Fluorescence Chemiluminescence Flame Photometry Electroanalytical Methods Polarography Electrocatalytic Paramagnetism Conductivity

Determination of SOx Emissions from Stationary Sources

Fluorescence SO₂ Analyzer

=

Method 7E

Determination of NOx Emissions from Stationary Sources

Chemiluminescence NO_x Analyzer

=

Determination of CO Emissions from Stationary Sources

Source Test Van Instruments

Instrument Inspections

Always Check Applicable Method & Subpart Instrument Span Calibration Error Sampling System Bias Gases Zero Drift & Calibration Drift I <+/- 3% of Span Over the Period of Each Run</p> Interference Check

Cal Gas Certificate Points

- Cylinder ID Number
- Balance Gas

- Cylinder Pressure
- Certification Date
- Expiration Date
- Lab & Analyst ID
- I (PGVP Part 75)

- Reference Standard Data
 Statement of Procedures
 Certified Concentration
 Gas Analyzer ID & Cal Date
- Analyzer Readings & Calc Used
- Chronological Cert Record

Calibration Gas Hierarchy

102 14.67

MABLE GAS

??

Relative Accuracy Test Audit (RATA) vs. CEMS

Integrated Sampling

Grab Sample Case

DPR 1183

Procedural Inspections

<u>Data Recording</u>

- Timely, Accurate, & Complete
- Standardized Form Used
- Computer Data Entry:

 Automatic - Computer Controlled Equipment
 On Site After Sampling or During Sample (Computer Data Entry Form)
 After Sampling Completed

Sample Conservation

- Container Material Must be Compatible with Sample
- Storage Conditions
 - Refrigerate the Samples if Held Overnight
- Blanks Properly Prepared & Shipped with Field Samples
- Sample Container Must be Labeled
- Shipping

Chain-of-Custody

Analysis

On Site

- Weights & Volumes
- Some Simple Titration's & Chemical Analysis can be Done on Site
- Work Area Conditions must be Consistent with Good Laboratory Procedures
- Off Site
 - Analytical Lab Should be Certified
- QA Samples

Emissions Calculations

Emission Calculations

Emission rates

Concentration (c_s) : (ppm, g/dscm, gr/dscf)
 Pollutant mass rate (pmr_s) : (kg/hr, lb/hr)
 Process rate (E) : (ng/J, lb/10⁶ BTU, lb/ton)
 Flow rates or F factors

Emissions $E = \frac{pmr_s}{Q_H} = \frac{c_s Q_s}{Q_H} \qquad E = c_s F\left(\frac{20.9}{20.9 - \% O_2}\right)$

Normalized to Diluent Gas **CO**₂ Conditions 12% CO₂ 6 % O₂ $\frac{15 c_s}{21 - \%0_2}$ $\mathbf{C}_{\mathbf{S} 12\%} = \mathbf{C}_{\mathbf{S}} \frac{12\%}{\%} \mathbf{CO}_{\mathbf{S}}$ C_{S 6%} =

Sup

Impact of Errors on Validity of <u>Test</u> What is will the Data to be Used for?

What is the Direction & Magnitude of any Biases?

What is the Acceptable Bias Before Rejecting the Testing?

Effects of Errors

Accuracy

→ Compares Well with the Correct Value

Precision

→ Repeated Tests Give the Same Results

Accuracy & Precision

Accurate and Precise

Neither Accurate nor Precise

Accurate but not Precise (\ddot{O})

Precise but not Accurate

Post Test Activities

Post Test Conference Observer's Test Report Report Requirements & **Submittal** Test Report Review Summary Data Detailed Test Data Raw Data

Evaluation of Compliance in Light of the Test Result

Post Test Activities

Current Enforcement Action
 Future Inspections
 Enforcement

Inspector Safety

- Proper equipment
- Plant warnings
- Heat

- High pressure steam
- Electrical hazards

Moving parts Inhalation hazards Hazardous materials Machine disintegration Other hazards & traps

If an Evaluator Can Evaluate Representativeness of :

Process & Control Equipment Operation
 Sampling Port Location
 Sample(s) Collected
 Sample Recovery & Analysis
 Final Report
Source Test Enforcement Cycle

Permitting

Source Test

Facility Just Inspections

Continued Compliance

