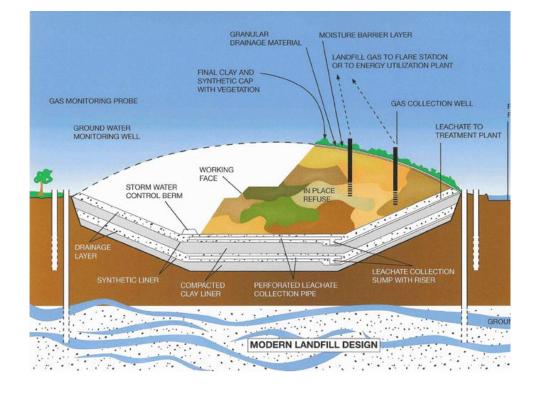
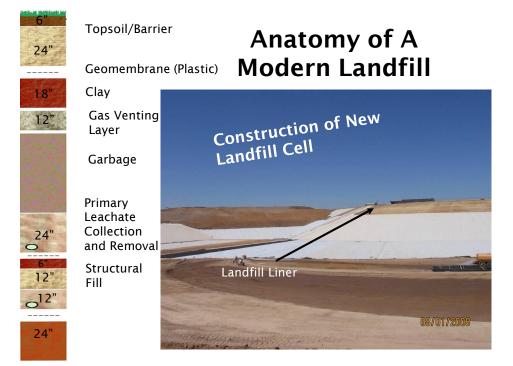
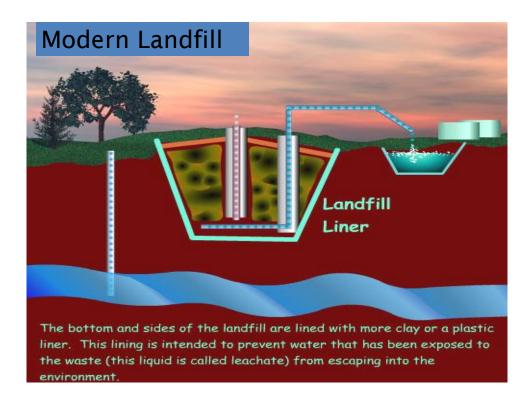
NACT 285 Landfill Gas Control

Introductions

- Your Name ?
- Where You Work?
- How Long?
- What do you Do All Day?
- How much experience do you have with landfills?




Course Objectives


- Landfill Basics 101
- Air Pollutants
- Rules and Regulations
- Landfill Gas Collection
- Surface Monitoring
- Landfill Gas Controls
- Methane Monitoring Equipment
- Inspection and Safety Tips

Not So Long Ago

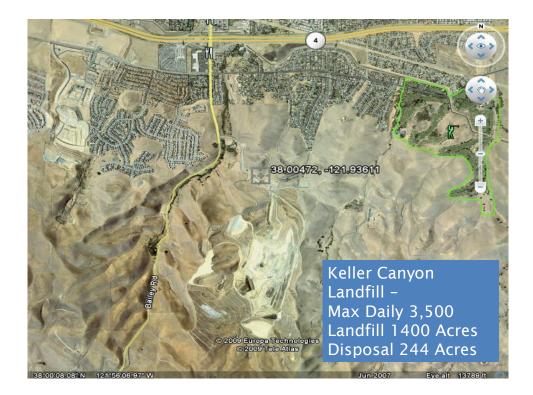
 $\cdot\,\text{New}$ York City's garbage for over 50 years

 \cdot Fresh Kills Landfill is the largest landfill in the world.

 \cdot 2,200 acres, (over 50 football stadiums) received 14,000 tons per day.

• Shut down in 2001.

• It became the disposal site for the remains of the World Trade Center after the terrorist attack of September 11, 2001.



Daily and Alternative Daily Cover

- Dirt
- Tarps
- Construction and Demolition (C&D)
- Greenwaste
- Sludge
- Tire Shreds
- Foam/Cellophane

Active or Working Face

Most Landfills Operate 7 Days a Week, 365 Days a Year!!!!

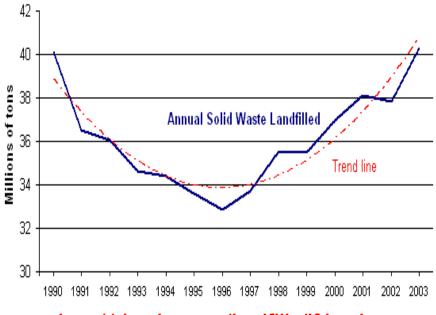
Walking Floor Trucks

How Do Landfills Make \$\$

- Compaction
- Airspace

Waste Generated, Diverted and Disposed

- 88.2 million tons generated
 - 42.0 tons disposed
 - 46.2 tons diverted
- 52% generated was diverted



Path of Solid Waste

http://ciwmb.ca.gov/landfills/lfdata.htm

Waste Disposal By Sector Household

Household

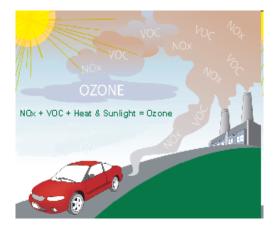
17,309226 tons/yr

- 2.1lbs/person/day
- Leaves and Grass 10% of total

Waste Disposal By Sector Business

<u>Business</u>

- 25,963,839 tons/yr
- 8.5 lbs/employee/day
- Paper 11% of total
- Retail Trade-Restaurants highest category

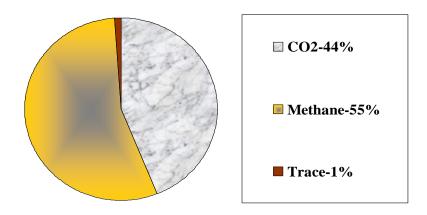


National Criteria Pollutants for Ambient Air

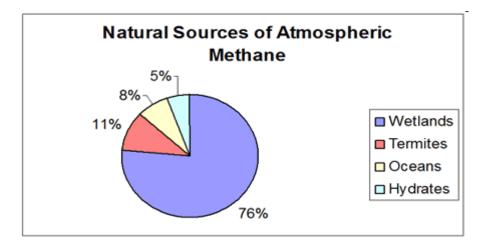
- Ozone
- Carbon Monoxide
- Nitrogen Dioxide
- Sulfur Dioxide
- Particulate Matter
- Lead

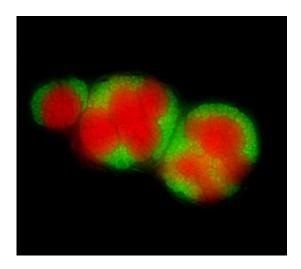
Primary Air Pollutants @ Landfills

- Methane (CH4)
- Non Methane Organic Compounds NMOC's
- Volatile Organics (VOCs)
- Toxics (HAPs & TACs)
- Odors (PUs)
- Particulate Matter (PM)
- CO2

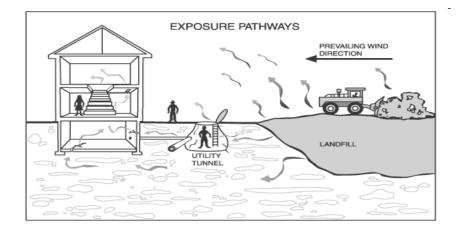

How Do We Capture Those Pollutants?

We Capture the Landfill Gas!!!


Breakdown of Landfill Gas


Methane Sources Other Than Landfills

Natural Methane Sources


How is Methane Produced @ Landfills?

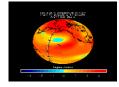
Methane Properties

- Colorless
- Odorless and tasteless
- Lighter than air
- Relatively insoluble in water
- Highly Explosive

Exposure Pathways

Methane (CH₄)

Explosive Hazard

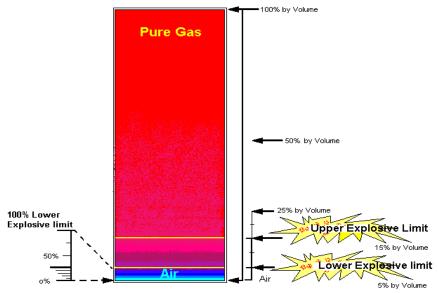


Economic

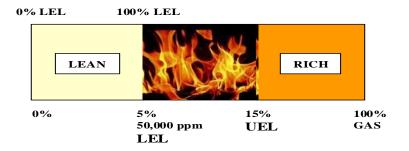
Vegetation/Crop Damage

Global Warming

Effects of Methane/ Landfill Gas



What Else is in Landfill Gas?

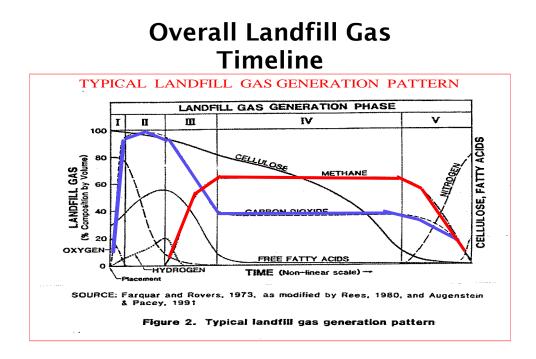

- Methane 45 to 60 %
- CO2 40 to 60 %
- N2 2 to 5 %
- Trace amounts:
 - · **O**2,
 - · ammonia,
 - ·Η2,
 - · sulfur compounds,
 - $\cdot \, \text{solvents,} \,$
 - $\cdot alcohols$
 - hydrocarbons

Upper and Lower Explosive Limits of Landfill Gas

Methane Explosive Limits

METHANE FLAMMABILITY RANGE

Methane General Statistics


 ✓ Landfill methane:
 ✓ 40% of man-made emissions
 ✓ 21 times the global warming impact of CO₂
 ✓ 50 - 90% Recovery possible

43

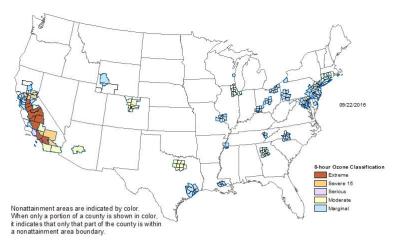
Landfill Gas Production Timeline

- Aerobic
 Days or months
 Anaerobic
 After all the O₂ is gone
 Methanogenic
 6 to 18 months
 Steady State
 50 Years post-closure

Volatile Organic Compounds Key Notes

- · High Vapor Pressure
- Low Water Solubility
- Aids in Formation of Ozone

Volatile Organic Compounds & Ozone



VOCs + NOx + Sunshine = Ozone

47

Do You Work in One of these Counties??

8-Hour Ozone Nonattainment Areas (2008 Standard)

VOC's in Landfill Gas

✓ 13.6 to 35.8 Tons of VOCs per million tons of refuse

 Vegetation damage

49

Toxic Compounds

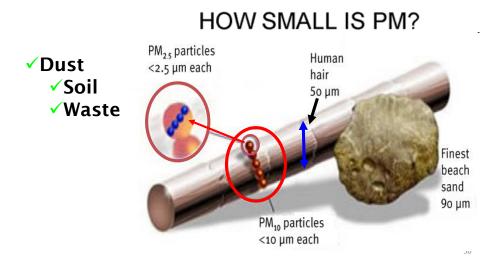
Thousands of chemicals
 Hazardous Air Pollutants
 (Federal)
 Toxic Air Contaminants
 (California)
 HAPs are TACs

LFG Concentration Statistics

Concentra	tion -	PPBV
-----------	--------	------

Compound	Contamination Detected *	Median	Ave **	Max **	
Perchloroethylene	241	38	1,100	45,000	
Trichloroethylene	228	30	840	11,000	
Methylene Chloride	197	37	4,800	160,000	
1,1,1-Trichloroethane	180	2 U ***	650	96,000	
Benzene	180	132 U	2,500	480,000	
Vinyl Chloride	160	106 U	2,200	72,000	
Ethylene Dichloride	65	5.1 U	600	98,000	
Chloroform	58	0.8 U	360	11,000	
Carbon Tetrachloride	31	1.2 U	11	2,100	
Ethylene Dibromide	24	0.3 U	4	660	
* = Landfill Gas Sampling was Conducted on 340 Landfills.					
** = Medians and Maximums of the Average Sampling from Sites.					
*** = U - Means Non-Detected; The number shown is detection limit.					

Odors (PU's)



Odor Issues

Particulate Matter (PM)


Violation?

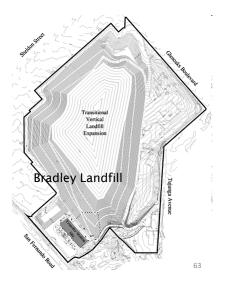
Sources of Particulate Matter

Sources of Particulate Matter

Legal Requirements

61

62


Regulation & Standards

Oversight for air quality issues is mostly at the Air Agency level, however there are Federal standards as well:

Title V of the CAA (40 CFR 70 and 71)
NSPS (40 CFR 60 Subpart WWW and Cc)
NSPS (40 CFR 60 Subpart XXX and Cf)
NESHAPS (40 CFR 63 Subpart AAAA)

Clean Air Act - Title V

- A landfill is subject to Title V if:
- Design capacity is equal to or greater than 2.5 million Mg <u>and</u> 2.5 million m³
- Its uncontrolled emissions are greater than the Major Source thresholds

40CFR Part 60 Subpart WWW

Applies to MSW landfills constructed, modified or reconstructed <u>after</u> 05/30/1991

Landfills larger than 2.5 million Mg AND 2.5 million m³ AND NMOC emissions greater than 50 Mg/yr must install landfill gas collection and control system

Regulation includes requirements for NMOC emission determination (3 tiers), collection system placement, lfg control systems, lfg treatment, wellhead operating standards, surface monitoring, removal of GCCS, corrective actions, design plans, and reporting.

40CFR Part 60 Subpart Cc

Requires States to enact regulations similar to WWW for MSW landfills constructed, modified or reconstructed on or before 05/30/1991 and accepted waste anytime on or after 11/08/87 or has additional capacity available for additional waste placement.

40CFR Part 63 Subpart AAAA

Developed as part of the federal urban air toxics strategy.

Applies to MSW landfills that accepted waste since 11/08/87 or have additional capacity and that are or at a major source of HAPS or is an area source but has a design capacity greater than 2.5 million megagrams and 2.5 m³ and NMOC emissions equal to or greater than 50 megagrams per year.

Requires compliance with WWW or Cc plus semi annual reports and a SSM plan.

40CFR Part 60 Subpart XXX Published in FR 08/29/16 Effective 10/28/16

Applies to MSW landfills constructed, modified or reconstructed <u>after</u> 7/17/14

Landfills larger than 2.5 million Mg AND 2.5 million m³ AND NMOC emissions greater than 34 Mg/yr must install landfill gas collection and control system

Regulation includes requirements for NMOC emission determination (added Tier 4), exclusion of low lfg production areas, lfg treatment, wellhead operating standards, surface monitoring, removal of GCCS, corrective actions, design plans, SSM, and electronic reporting

40CFR Part 60 Subpart Cf

Published in FR 08/29/16 Effective 10/28/16

Applies to MSW landfills constructed, modified or reconstructed <u>on or before 7/17/14</u> (think WWW)

States must submit plan by May 30, 2017

Landfills larger than 2.5 million Mg AND 2.5 million m³ AND NMOC emissions greater than 34 Mg/yr AND accepted waste after 11/8/87 must install landfill gas collection and control system

Regulation requires states to include all of the requirements of XXX but adds in allowances for closed or closing landfills.

68

EPA Administrator issued letter on 5/5/17 announcing stay of Subparts XXX and Cf for 90 days. Published in FR on 5/31/17. Stay effective 5/31/17 to 8/29/17.

Stay extended for Subpart XXX on 8/29/18.

Stay was lifted by EPA at some point

On 8/26/2019, EPA finalized modifications to Subpart Cf to extend state plan submittal date to 8/29/19 and lengthen EPA review timelines.

On 3/9/20, EPA issued a notice of failure to submit state plans.

Federal plan proposed on 8/22/19

States must either submit plans or accept federal plan.

New Source Review (NSR) Considerations

Potentially applicable to any *new* or *modified* source

- BACT Best Available Control Technology, may be required on new or modified sources

 Secondary Pollutants
 Toxics (TBACT)
- LAER for nonattainment NSR

New Source Review (NSR) Considerations Cont.

- May result in more stringent requirements than those in NSPS or Agency Rules
 - Permitting authority will study feasibility (Achieved-in-Practice, Technologically Available, Alternate Basic Equipment)
 - Cost effectiveness

New Source Review (NSR) Considerations Cont.

- Public Noticing Projects with significant environmental impacts
 - Annual and daily emissions thresholds
 - Triggering offsets
 - Triggering Major Modification
 - CEQA Concerns
 - Environmental Justice

73

New Source Review (NSR) Considerations Cont.

- Offsets Availability and Cost concerns
- Monitoring, Recordkeeping, Reporting (MRR)
- Source Testing

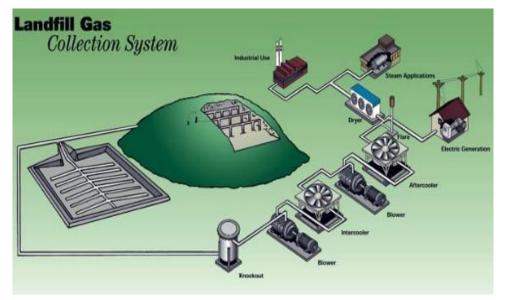
How are Emissions Assessed?

VOC Emissions:

✓ Samples from well sites Massbalance calculations (SOx and HCl)

LandGEM - AP-42 based methodology (Section2.4.4.1)

Emissions Assessment Cont.


PM10 Emissions: AP-42 Drop Equation (Section 13.2.4.3) Maximum limits on earth moved for daily cover AP-42 on road and off road vehicle emissions

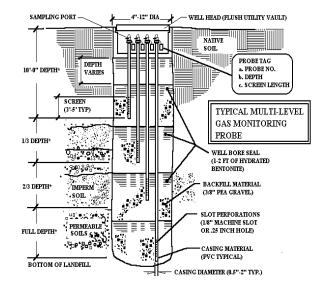
Gas Collection

LFG - Movement

Monitoring and Movement

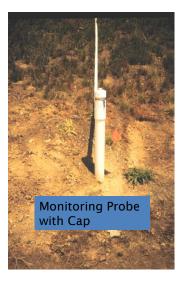
- ✓ Gas follows the path of least resistance
- Moves over, under, and around obstacles in its path
- Dilutes as it travels away from source
- ✓ Pressure gradients

LFG – Monitoring Systems


Subsurface perimeter

✓Surface emissions

Enclosed space(Buildings)



Typical Monitoring Well Diagram

Typical Monitoring Wells

Installation of a Three Tier Probe

Well Installation

Gas Collection & Control System Design Criteria

Expected ambient and gas temperature
 Above/below ground header system
 Future requirements to bury system
 Seasonal conditions to bury system
 Existing odor problems

Gas Collection & Control System Design Criteria

Landfill location and type

- Geometry, geography, topography, hydrology, geology
- Existing landfill design and history

87

88

- Refuse depth to surroundings
- Existing permit conditions

Gas Collection & Control System Design Criteria

- Tonnage chronology
- Landfill surface cover material (past and present)
- Placement and compaction of refuse
- Leachate presence and control
- Groundwater monitoring network

Gas Collection & Control System Design Criteria

✓Utility access

✓ Sewer, electrical, water, cable, etc

✓ Condensate drainage

Slopes, piping, and grade

Gas Collection & Control System Design Criteria

Other Considerations?

Various Collection Systems

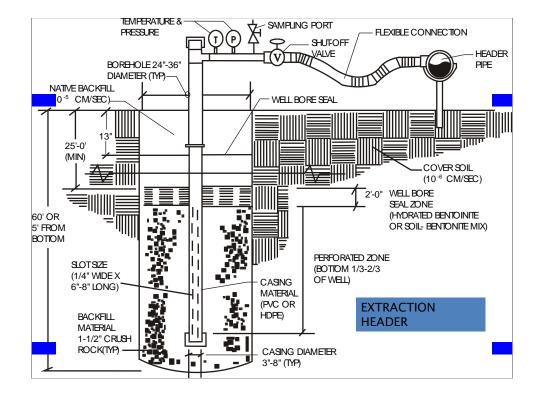
✓Horizontal trench

✓Passive collection

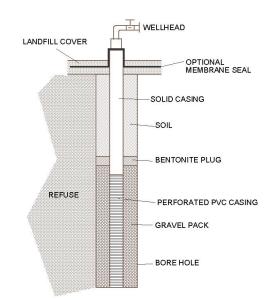
✓Active vertical well

91

92

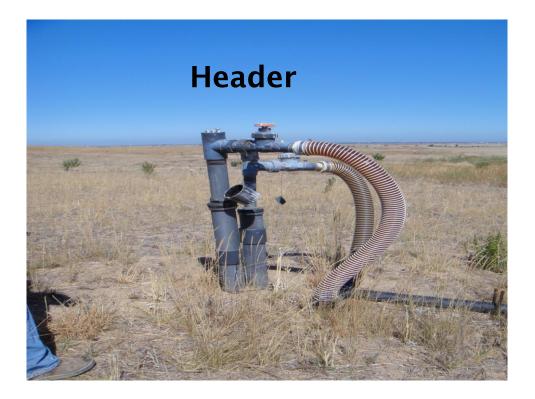

Active Control System

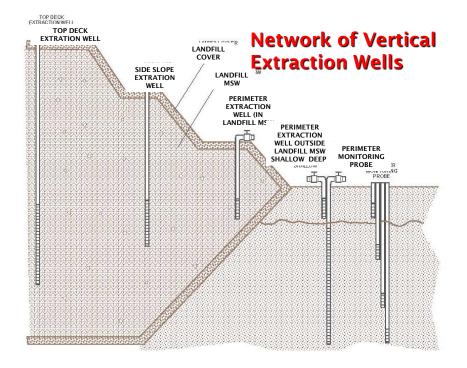
Perimeter air injection trenches

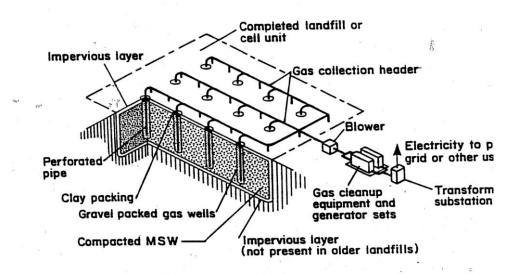

Perimiter extraction trenches

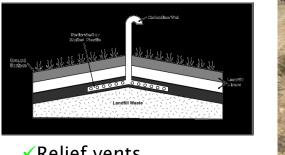
Perimeter extraction wells

✓ Perimeter air injection wells




Extraction Well





Active Vertical Well System

Passive Control System

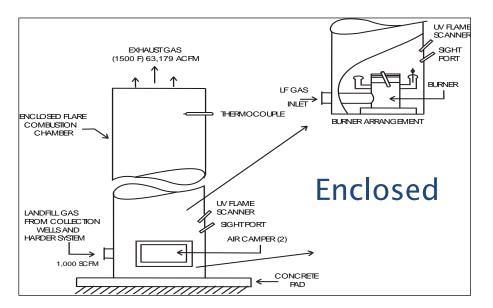
✓Relief vents

Perimeter barrier trenches

Erosion Issues at Landfills

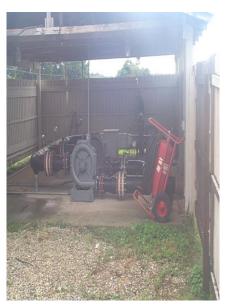
Control Measures

Flares



Energy production

<section-header><section-header><image>


Flare Types

Flare Types Continued

Blowers

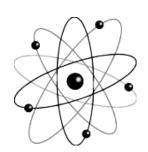
Energy Production

Internal combustion engine

- ✓ Turbines
- Boilers

Pipeline

✓ Fuel Cell



107

Methane - Energy Content

<u>BTU / ft³</u> •CH4 maximum - 1,013

· LFG Avg. - 300-500

Electricity Generation Technology

	IC Engines	Turbines	Boilers		
	* Low cost	* Corrosion resistant	* Corrosion resistant		
Advantages	* High efficiency	* Low O&M costs	* Can handle gas		
	* Common technology	* Small physical size	Composition variations		
		* Low Nox emissions	* Low NOx emissions		
	* Problems due to	* Inefficient at partial load	* Innefficient at smaller		
	PM buildup	* High parasitic loads	sizes		
Disadvantages	* Corrosion of engine	Due to high	* Requires large amounts		
	Parts and catalysts	compression req.	of clean water		
	* High Nox emissions	* High capital costs			

Secondary Air Pollutants

NOx Toxics

SOx

PM CO

Methane Monitoring Instruments

✓Infrared detector (GEM 2000)

✓Catalytic oxidation detector (%LEL)

Thermal conductivity meter (% Gas)

✓Flame Ionization Detector (FID)

✓Photo Ionization Detector (PID)

114

Monitoring Equipment

Photoionization Detector

Foxboro Flame Ionization Detector (0-1000 PPM) \$4,000

GEM 2000 Infrared and CGI Detection

GMI CGI Thermal Conductive (% Gas) Combustible Gas Indicator (% LEL) with CO and O2 Sensors

FID/PID

Photoionzation

- Advantages
 - · Good with low level detection
 - · Is not temperature dependent

Disadvantages

• Not good in a high methane concentration environment

- Must have proper eV lamp (13.0)
- Wears out faster
- ·Sensitive to humidity/dust
- · Electromagnetic interference

117

Combustible Gas Indicator

Advantages

- ·Small and portable
- ·Internal battery
- ·Thermal mode for high or low O2
- Easy to use
- "Safe"

Disadvantages

- · Temperature dependant
- ·Calibration gas impacts results
- · Catalytic mode problem with O₂
- ·Leaded gas, halogens, sulfur, silicon
- can harm filament
- $\cdot \text{CO}_2 \text{ fouls O}_2 \text{ cell}$

Flame Ionization Detectors

Advantages

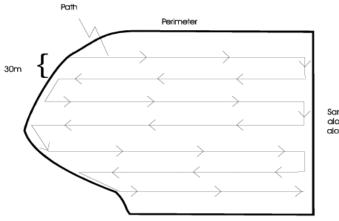
- Fast response
- ·Sensitivity (1 100,000 ppm)
- Accuracy
- \cdot Variety of probes
- \cdot Reads LEL in low O₂ environment

Disadvantages

- ·Short battery life
- · False positives
- · Few portable models
- ·Calibration gas impacts
- \cdot EXPENSIVE!

119

Total Vapor Analyzer Combo FID/PID



What Do We Do with These Instruments?

Monitoring A Perimeter Well

Traverse for Monitoring Methane Concentrations

Sample every 30 m along the path and along the perimeter

Inspections

✓ Pre-inspection
 ✓ File review
 ✓ Rule review
 ✓ Inspection forms
 ✓ Equipment check
 ✓ Inspection
 ✓ Pre-entry and entry
 ✓ Pre-inspection meeting
 ✓ Facility procedures
 ✓ Post inspection

125

Safety

Pre-Inspection General Guidelines

 Regulation review
 Equipment check
 Pre-entry and entry
 Pre-inspection meeting
 Permit check

Pre-Inspection Meeting

Facility name and ownership

Address w/ city and zip

Contact name and title

Phone number w/area code

Production rate

Operating schedule

Operation season

✓ Date of last source test

Fuel usage & sulfur content

What's new?

129

Inspection Report

- Description of the facility and process(es)
- Flowchart with equipment location and emission points
- Process diagram (materials handled, flow rates, temperature, pressure)

 Statement as to compliance/ non-compliance

Recommendations

SYSTEM OVERVIEW SCREEN												
- 11	IC ENGINE 4				IC ENGINE 5							
- 11	Analyzer Units	10 Sec. 1 Min.	15 Min. 1 Hr	3 Hr	Analyzer Un	iits 10 Sec.	1 Min. 15 Mir	n. 1 Hr	3 Hr			
	02 %	10.86 10.65	10.56 10.35	10.44	02 %	6 -6.25D	6.250 2.500	0.000	0.000			
	NOx ppm	21.6 28.2	31.4 42.9	39.2	NOx pp	m -25.0D	-25.00 -10.00	0.00	0.00			
	NOx Corr. ppm	12.7 16.2	17.9 24.0	22.1	NOx Corr. pp	m 0.00	0.00 0.00	0.00	0.00			
	CO ppm	469.8 464.6	424.9 374.9	398.1	со рр	m -250.0D	-250.00 -100.00	0.00	0.00			
	CO Corr. ppm	276.2 267.6	242.7 209.8	225.2	CO Corr. pp	m 0.00	0.00 0.00	0.00	0.00			
	CoolerTmp Deg.	F 38.5		Cor	alerTmp Deg	F 7520						
	Cabinet Deg.	F 73.0										
	System Status	On-line Wet Sample	Smpl Flow SLine Probe Temp Cool		System Status	Van Se	ine Low Flow		emp:			
	PREVIOUS NEXT Red Blinking Lights?											
	Data Status: <=	OK< B=Bad C=Ce	librating M=Missing	D-Channel Dow	n (Maint) d=	Process Down	X=Out Of Control	(Cal Fail) P	Purae			
	Station Single Station	Group	Channel	Alarm	Value	Status	Start 02/03/2009 11:07:40	Aci	K -			
	Single Station	Eng_5 1 Min Digital Eng_5 1 Min Digital	Cooler Fit Maint Mode	Limit	Cooler Fit Eng5 Maint	URACK ACTOR	02/03/2009 11 07:40					
1.000	Single Station	Eng_5 1 Min Digital	Wet Sample	Limit	Wet Sample	UnAck Active	02/03/2009 10 40.30					
	Single Station	Eng_51 Min Raw	CoolerTmp	Limit	75.6	UnAck Active	02/03/2009 10:40:00					
	Log On Name: ANDY Log On Level: Technician CEMTEK-4AEB0A46 Acknowledge Alarm: 2 25/2009 11:39:31											
	👪 Start 👘 🔀 🖉 🐘 🕥 Rusenaux Segurt Konnt 🔛 Data Monter - Keler 🖉 🖉 🛛 🖓 🖓											

Control Device

✓Are there any visible leaks?

✓Is it functioning?

✓Can the device handle the job?

Subsystem

✓What is the ultimate fate of captured or concentrated emissions?

135

<u>The End!!</u> Time for the Field Trip

